1
|
Khivantsev K, Jaegers NR, Aleksandrov HA, Song I, Pereira-Hernandez XI, Engelhard MH, Tian J, Chen L, Motta Meira D, Kovarik L, Vayssilov GN, Wang Y, Szanyi J. Single Ru(II) Ions on Ceria as a Highly Active Catalyst for Abatement of NO. J Am Chem Soc 2023; 145:5029-5040. [PMID: 36812067 DOI: 10.1021/jacs.2c09873] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Atom trapping leads to catalysts with atomically dispersed Ru1O5 sites on (100) facets of ceria, as identified by spectroscopy and DFT calculations. This is a new class of ceria-based materials with Ru properties drastically different from the known M/ceria materials. They show excellent activity in catalytic NO oxidation, a critical step that requires use of large loadings of expensive noble metals in diesel aftertreatment systems. Ru1/CeO2 is stable during continuous cycling, ramping, and cooling as well as the presence of moisture. Furthermore, Ru1/CeO2 shows very high NOx storage properties due to formation of stable Ru-NO complexes as well as a high spill-over rate of NOx onto CeO2. Only ∼0.05 wt % of Ru is required for excellent NOx storage. Ru1O5 sites exhibit much higher stability during calcination in air/steam up to 750 °C in contrast to RuO2 nanoparticles. We clarify the location of Ru(II) ions on the ceria surface and experimentally identify the mechanism of NO storage and oxidation using DFT calculations and in situ DRIFTS/mass spectroscopy. Moreover, we show excellent reactivity of Ru1/CeO2 for NO reduction by CO at low temperatures: only 0.1-0.5 wt % of Ru is sufficient to achieve high activity. Modulation-excitation in situ infrared and XPS measurements reveal the individual elementary steps of NO reduction by CO on an atomically dispersed Ru ceria catalyst, highlighting unique properties of Ru1/CeO2 and its propensity to form oxygen vacancies/Ce+3 sites that are critical for NO reduction, even at low Ru loadings. Our study highlights the applicability of novel ceria-based single-atom catalysts to NO and CO abatement.
Collapse
Affiliation(s)
- Konstantin Khivantsev
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Nicholas R Jaegers
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Hristiyan A Aleksandrov
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1, J. Bourchier boulevard, 1126 Sofia, Bulgaria
| | - Inhak Song
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | | | - Mark H Engelhard
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Jinshu Tian
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Linxiao Chen
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Debora Motta Meira
- Canadian Light Source: Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Libor Kovarik
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Georgi N Vayssilov
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1, J. Bourchier boulevard, 1126 Sofia, Bulgaria
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - János Szanyi
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| |
Collapse
|
2
|
Nasluzov VA, Ivanova-Shor EA, Shor AM, Laletina SS, Neyman KM. Adsorption and Oxidation of CO on Ceria Nanoparticles Exposing Single-Atom Pd and Ag: A DFT Modelling. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6888. [PMID: 34832290 PMCID: PMC8618484 DOI: 10.3390/ma14226888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Various COx species formed upon the adsorption and oxidation of CO on palladium and silver single atoms supported on a model ceria nanoparticle (NP) have been studied using density functional calculations. For both metals M, the ceria-supported MCOx moieties are found to be stabilised in the order MCO < MCO2 < MCO3, similar to the trend for COx species adsorbed on M-free ceria NP. Nevertheless, the characteristics of the palladium and silver intermediates are different. Very weak CO adsorption and the small exothermicity of the CO to CO2 transformation are found for O4Pd site of the Pd/Ce21O42 model featuring a square-planar coordination of the Pd2+ cation. The removal of one O atom and formation of the O3Pd site resulted in a notable strengthening of CO adsorption and increased the exothermicity of the CO to CO2 reaction. For the analogous ceria models with atomic Ag instead of atomic Pd, these two energies became twice as small in magnitude and basically independent of the presence of an O vacancy near the Ag atom. CO2-species are strongly bound in palladium carboxylate complexes, whereas the CO2 molecule easily desorbs from oxide-supported AgCO2 moieties. Opposite to metal-free ceria particle, the formation of neither PdCO3 nor AgCO3 carbonate intermediates before CO2 desorption is predicted. Overall, CO oxidation is concluded to be more favourable at Ag centres atomically dispersed on ceria nanostructures than at the corresponding Pd centres. Calculated vibrational fingerprints of surface COx moieties allow us to distinguish between CO adsorption on bare ceria NP (blue frequency shifts) and ceria-supported metal atoms (red frequency shifts). However, discrimination between the CO2 and CO32- species anchored to M-containing and bare ceria particles based solely on vibrational spectroscopy seems problematic. This computational modelling study provides guidance for the knowledge-driven design of more efficient ceria-based single-atom catalysts for the environmentally important CO oxidation reaction.
Collapse
Affiliation(s)
- Vladimir A. Nasluzov
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.A.N.); (A.M.S.); (S.S.L.)
| | - Elena A. Ivanova-Shor
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.A.N.); (A.M.S.); (S.S.L.)
| | - Aleksey M. Shor
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.A.N.); (A.M.S.); (S.S.L.)
| | - Svetlana S. Laletina
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.A.N.); (A.M.S.); (S.S.L.)
| | - Konstantin M. Neyman
- Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain;
- ICREA (Institució Catalana de Recerca i Estudis Avançats), 08010 Barcelona, Spain
| |
Collapse
|
3
|
Sangnier A, Genty E, Iachella M, Sautet P, Raybaud P, Matrat M, Dujardin C, Chizallet C. Thermokinetic and Spectroscopic Mapping of Carbon Monoxide Adsorption on Highly Dispersed Pt/γ-Al 2O 3. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexis Sangnier
- IFP Energies Nouvelles, Institut Carnot IFPEN Transports Energies, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
- IFP Energies Nouvelles, Rond-Point de l’Echangeur de Solaize, BP 3, 69360 Solaize, France
| | - Eric Genty
- Univ. Lille, Centrale Lille, CNRS, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Mathilde Iachella
- Université de Lyon, CNRS, Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Philippe Sautet
- Université de Lyon, CNRS, Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
- Chemical and Biomolecular Engineering Department, Chemistry and Biochemistry Department and CNSI, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Pascal Raybaud
- IFP Energies Nouvelles, Rond-Point de l’Echangeur de Solaize, BP 3, 69360 Solaize, France
| | - Mickaël Matrat
- IFP Energies Nouvelles, Institut Carnot IFPEN Transports Energies, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Christophe Dujardin
- Univ. Lille, Centrale Lille, CNRS, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Céline Chizallet
- IFP Energies Nouvelles, Rond-Point de l’Echangeur de Solaize, BP 3, 69360 Solaize, France
| |
Collapse
|
4
|
Koleva IZ, Aleksandrov HA, Vayssilov GN. Influence of the adsorption of CO on the electronic structure of platinum clusters and nanowires deposited on CeO2(111) and γ-Al2O3(001) surfaces. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.07.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Sakti A, Chou CP, Nakai H. Density-Functional Tight-Binding Study of Carbonaceous Species Diffusion on the (100)-γ-Al 2O 3 Surface. ACS OMEGA 2020; 5:6862-6871. [PMID: 32258922 PMCID: PMC7114690 DOI: 10.1021/acsomega.0c00203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/05/2020] [Indexed: 05/17/2023]
Abstract
Carbonaceous or oxy-carbon species are intermediates formed during C x H y combustion on a Pt n /Al2O3 catalyst, which contain carbon, hydrogen, and oxygen atoms. The accumulation of the carbonaceous species, arguably, leads to catalytic deactivation; therefore, their removal is of importance. As the diffusion process is occasionally the rate-determining step in the growth of carbonaceous species, the present study aims to reveal the diffusion mechanisms. The free energy barriers of acetate, formate, and methoxy diffusion on the (100)-γ-Al2O3 surface were evaluated through extensive metadynamics simulations at the density-functional tight-binding level. The present work deduces that each adopted carbonaceous species exhibits different diffusion mechanisms and supports experimental evidence that the acetate species exhibits the slowest diffusivity among the adopted carbonaceous species.
Collapse
Affiliation(s)
- Aditya
W. Sakti
- Element
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto 615-8520, Japan
- Waseda
Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan
| | - Chien-Pin Chou
- Waseda
Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Element
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto 615-8520, Japan
- Waseda
Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan
- Department
of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- E-mail: . Phone: +81 3-5286-3452. Fax: +81 3-3205-2504
| |
Collapse
|
6
|
Liu A, Liu L, Cao Y, Wang J, Si R, Gao F, Dong L. Controlling Dynamic Structural Transformation of Atomically Dispersed CuOx Species and Influence on Their Catalytic Performances. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02773] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Annai Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Lichen Liu
- Instituto de Tecnología Química, Universitat Politècnica de València−Consejo Superior de Investigaciones Científicas (UPV−CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Yuan Cao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Jiaming Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Fei Gao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Lin Dong
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
7
|
Aleksandrov HA, Koleva IZ, Neyman KM, Tabakova TT, Vayssilov GN. Structure and reducibility of yttrium-doped cerium dioxide nanoparticles and (111) surface. RSC Adv 2018; 8:33728-33741. [PMID: 36188438 PMCID: PMC9467279 DOI: 10.1039/c8ra07014h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 01/17/2023] Open
Abstract
Using periodic density functional calculations, we studied the local structure and preferred locations of yttrium cations and oxygen vacancies in Y-doped cerium dioxide. We employed three kinds of models – a slab of the CeO2(111) surface and two ceria nanoparticles of different sizes and shapes. In the slab models, which represent the (111) surface of ceria and the corresponding extended terraces on the facets of its nanoparticles, Y3+ cation dopants were calculated to be preferentially located close to each other. They tend to surround a subsurface oxygen vacancy that forms to maintain the charge balance. Such general behavior was not found for the nanoparticle models, in which structural flexibility and the presence of various low-coordinated surface centers seem to be crucial and suppress most of the trends. Configurations with four Y3+ cations were calculated to be particularly stable when they combined two of the most stable configurations with two Y3+ cations. However, no clear trend was found regarding the preferential spatial distribution of the Y3+ pairs – they can be stable both in isolation and close to each other. In general, doping by yttrium does not notably change the reducibility of ceria systems but selectively facilitates the formation of oxygen vacancies at the ceria surface in comparison with pristine ceria. Yttrium cations also slightly increase the basicity of the nearby oxygen centers with respect to a stoichiometric ceria surface. Energetics and mutual locations of Y3+ ion dopants and O vacancies in CeO2 nanomaterials relevant to catalysis have been studied.![]()
Collapse
Affiliation(s)
- Hristiyan A. Aleksandrov
- Faculty of Chemistry and Pharmacy
- University of Sofia
- 1126 Sofia
- Bulgaria
- Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional
| | - Iskra Z. Koleva
- Faculty of Chemistry and Pharmacy
- University of Sofia
- 1126 Sofia
- Bulgaria
| | - Konstantin M. Neyman
- Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats)
| | | | | |
Collapse
|