1
|
Recent progress in oxidation chemistry of high-valent ruthenium-oxo and osmium-oxo complexes and related species. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Shit M, Mukherjee S, Maity S, Bera S, Ghosh P. Oxo transfer reaction: Dioxido and monooxidovanadium(V) complexes. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Singh P, Denler MC, Mayfield JR, Jackson TA. Differences in chemoselectivity in olefin oxidation by a series of non-porphyrin manganese(IV)-oxo complexes. Dalton Trans 2022; 51:5938-5949. [PMID: 35348163 DOI: 10.1039/d2dt00876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
High valent metal-oxo intermediates are versatile oxidants known to facilitate both oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions in nature. In addition to performing essential yet challenging biological reactions, these intermediates are known for their selectivity in favoring the formation of one oxidation product. To understand the basis for this selectivity, we explore the role of equatorial ligand field perturbations in MnIV-oxo complexes on chemoselectivity in cyclohexene oxidation. We also examine reactions of MnIV-oxo complexes with cyclohexene-d10, cyclooctene, and styrene. Within this series, the product distribution in olefin oxidation is highly dependent on the coordination environment of the MnIV-oxo unit. While MnIV-oxo complexes with sterically encumbered, and slightly tilted, MnO units favor CC epoxidation products in cyclohexene oxidation, a less encumbered analogue prefers to cleave allylic C-H bonds, resulting in cyclohexenol and cyclohexenone formation. These conclusions are drawn from GC-MS product analysis of the reaction mixture, changes in the UV-vis absorption spectra, and kinetic analyses. DFT computations establish a trend in thermodynamic properties of the MnIV-oxo complexes and their reactivity towards olefin oxidation on the basis of the MnO bond dissociation free energy (BDFE). The most reactive MnIV-oxo adduct from this series oxidizes cyclohexene-d10, cyclooctene, and styrene to give corresponding epoxides as the only detected products. Collectively, these results suggest that the chemoselectivity obtained in oxidation of olefins is controlled by both the coordination environment around the MnO unit, which modulates the MnO BDFE, and the BDFEs of the allylic C-H bond of the olefins.
Collapse
Affiliation(s)
- Priya Singh
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Jaycee R Mayfield
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| |
Collapse
|
4
|
Tomboc GM, Park Y, Lee K, Jin K. Directing transition metal-based oxygen-functionalization catalysis. Chem Sci 2021; 12:8967-8995. [PMID: 34276926 PMCID: PMC8261717 DOI: 10.1039/d1sc01272j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
This review presents the recent progress of oxygen functionalization reactions based on non-electrochemical (conventional organic synthesis) and electrochemical methods. Although both methods have their advantages and limitations, the former approach has been used to synthesize a broader range of organic substances as the latter is limited by several factors, such as poor selectivity and high energy cost. However, because electrochemical methods can replace harmful terminal oxidizers with external voltage, organic electrosynthesis has emerged as greener and more eco-friendly compared to conventional organic synthesis. The progress of electrochemical methods toward oxygen functionalization is presented by an in-depth discussion of different types of electrically driven-chemical organic synthesis, with particular attention to recently developed electrochemical systems and catalyst designs. We hope to direct the attention of readers to the latest breakthroughs of traditional oxygen functionalization reactions and to the potential of electrochemistry for the transformation of organic substrates to useful end products.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Yeji Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Kyoungsuk Jin
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
5
|
Sharma N, Zou HB, Lee YM, Fukuzumi S, Nam W. A Mononuclear Non-Heme Manganese(III)-Aqua Complex in Oxygen Atom Transfer Reactions via Electron Transfer. J Am Chem Soc 2021; 143:1521-1528. [PMID: 33439643 DOI: 10.1021/jacs.0c11420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal-oxygen complexes, such as metal-oxo [M(O2-)], -hydroxo [M(OH-)], -peroxo [M(O22-)], -hydroperoxo [M(OOH-)], and -superoxo [M(O2•-)] species, are capable of conducting oxygen atom transfer (OAT) reactions with organic substrates, such as thioanisole (PhSMe) and triphenylphosphine (Ph3P). However, OAT of metal-aqua complexes, [M(OH2)]n+, has yet to be reported. We report herein OAT of a mononuclear non-heme Mn(III)-aqua complex, [(dpaq)MnIII(OH2)]2+ (1, dpaq = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-yl-acetamidate), to PhSMe and Ph3P derivatives for the first time; it is noted that no OAT occurs from the corresponding Mn(III)-hydroxo complex, [(dpaq)MnIII(OH)]+ (2), to the substrates. Mechanistic studies reveal that OAT reaction of 1 occurs via electron transfer from 4-methoxythioanisole to 1 to produce the 4-methoxythioanisole radical cation and [(dpaq)MnII(OH2)]+, followed by nucleophilic attack of H2O in [(dpaq)MnII(OH2)]+ to the 4-methoxythioanisole radical cation to produce an OH adduct radical, 2,4-(MeO)2C6H3S•(OH)Me, which disproportionates or undergoes electron transfer to 1 to yield methyl 4-methoxyphenyl sulfoxide. Formation of the thioanisole radical cation derivatives is detected by the stopped-flow transient absorption measurements in OAT from 1 to 2,4-dimethoxythioanisole and 3,4-dimethoxythioanisole, being compared with that in the photoinduced electron transfer oxidation of PhSMe derivatives, which are detected by laser-induced transient absorption measurements. Similarly, OAT from 1 to Ph3P occurs via electron transfer from Ph3P to 1, and the proton effect on the reaction rate has been discussed. The rate constants of electron transfer from electron donors, including PhSMe and Ph3P derivatives, to 1 are fitted well by the electron transfer driving force dependence of the rate constants predicted by the Marcus theory of outer-sphere electron transfer.
Collapse
Affiliation(s)
- Namita Sharma
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Huai-Bo Zou
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Department of Chemistry and Bioengineering, Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun 336000, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
6
|
Lopez S, Mayes DM, Crouzy S, Cavazza C, Leprêtre C, Moreau Y, Burzlaff N, Marchi-Delapierre C, Ménage S. A Mechanistic Rationale Approach Revealed the Unexpected Chemoselectivity of an Artificial Ru-Dependent Oxidase: A Dual Experimental/Theoretical Approach. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sarah Lopez
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
- Univ. Grenoble-Alpes, DCM-SeRCO, F-38000 Grenoble, France
| | | | - Serge Crouzy
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Christine Cavazza
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Chloé Leprêtre
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Yohann Moreau
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | | | - Stéphane Ménage
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| |
Collapse
|
7
|
Lewis acid promoted double bond migration in O-allyl to Z-products by Ru-H complexes. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Liu Y, Lau TC. Activation of Metal Oxo and Nitrido Complexes by Lewis Acids. J Am Chem Soc 2019; 141:3755-3766. [DOI: 10.1021/jacs.8b13100] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yingying Liu
- Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Tai-Chu Lau
- Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
9
|
Non-redox metal ions accelerated oxygen atom transfer by Mn-Me3tacn complex with H2O2 as oxygen resource. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Zhang J, Wei WJ, Lu X, Yang H, Chen Z, Liao RZ, Yin G. Nonredox Metal Ions Promoted Olefin Epoxidation by Iron(II) Complexes with H2O2: DFT Calculations Reveal Multiple Channels for Oxygen Transfer. Inorg Chem 2017; 56:15138-15149. [DOI: 10.1021/acs.inorgchem.7b02463] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jisheng Zhang
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wen-Jie Wei
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaoyan Lu
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hang Yang
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
11
|
Transformation of Methyl Linoleate to its Conjugated Derivatives with Simple Pd(OAc)2/Lewis Acid Catalyst. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-3052-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Lv Z, Chen Z, Hu Y, Zheng W, Wang H, Mo W, Yin G. A General Strategy for Open-Flask Alkene Isomerization by Ruthenium Hydride Complexes with Non-Redox Metal Salts. ChemCatChem 2017. [DOI: 10.1002/cctc.201700687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhanao Lv
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Yue Hu
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Wenrui Zheng
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Haibin Wang
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Wanling Mo
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| |
Collapse
|
13
|
Promoting a non-heme manganese complex catalyzed oxygen transfer reaction by both lewis acid and Brønsted acid: Similarities and distinctions. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Li J, Zhang C, Jiang P, Leng Y. Cross-linked chitosan supporting polyoxometalates catalyst with adjustable redox property for H2O2-based oxidation reactions. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Lv Z, Wang H, Chen Z, Zou S, Zhu S, Lou C, Yin G. Non-redox metal ions promoted dehydrogenation of saturated C–C bond by a ruthenium catalyst with dioxygen activation. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2016.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|