1
|
Konarev DV, Kuzmin AV, Shestakov AF, Khasanov SS, Lyubovskaya RN. Coordination-induced metal-to-macrocycle charge transfer and effect of cations on reorientation of the CN ligand in the {SnL2Mac}2− dianions (L = CN−, OCN−, Im−; Mac = phthalo- or naphthalocyanine). Dalton Trans 2019; 48:4961-4972. [DOI: 10.1039/c9dt00655a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Anionic coordination {crypt(M+)}2{SnL2Mac}2− complexes of tin(ii) phthalo- (Pc) and naphthalocyanines (Nc) were obtained and discussed.
Collapse
Affiliation(s)
- Dmitri V. Konarev
- Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russia
| | | | - Alexander F. Shestakov
- Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russia
- Lomonosov Moscow State University
- Leninskie Gory
| | | | | |
Collapse
|
2
|
Konarev DV, Kuzmin AV, Batov MS, Khasanov SS, Otsuka A, Yamochi H, Kitagawa H, Lyubovskaya RN. {CpFe II(CO) 2Sn II(Macrocycle •3-)} Radicals with Intrinsic Charge Transfer from CpFe(CO) 2 to Macrocycles (Cp: Cp or Cp*); Effective Magnetic Coupling between Radical Trianionic Macrocycles •3. ACS OMEGA 2018; 3:14875-14888. [PMID: 31458154 PMCID: PMC6644027 DOI: 10.1021/acsomega.8b02221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/22/2018] [Indexed: 06/10/2023]
Abstract
Neutral {CpFeII(CO)2[SnII(Pc•3-)]} {Cp is cyclopentadienyl (1, 2) or Cp* is pentamethylcyclopentadienyl (3); Pc: phthalocyanine}, {Cp*FeII(CO)2[SnII(Nc•3-)]} (4, Nc: naphthalocyanine), and {CpFeII(CO)2[SnII(TPP•3-)]} (5, TPP: tetraphenylporphyrin) complexes in which CpFeII(CO)2 fragments (Cp: Cp or Cp*) are coordinated to SnII(macrocycle•3-) have been obtained. The product complexes were obtained at the reaction of charge transfer from CpFeI(CO)2 (Cp: Cp or Cp*) to [SnII(macrocycle2-)] to form the diamagnetic FeII and paramagnetic radical trianionic macrocycles. As a result, these formally neutral complexes contain S = 1/2 spins delocalized over the macrocycles. This provides alternation of the C-Nimine or C-Cmeso bonds in the macrocycles, the appearance of new bands in the near-infrared spectra of the complexes, and blue shift of both Soret and Q-bands. The {CpFeII(CO)2SnII(macrocycle•3-)} units (Cp: Cp or Cp*, macrocycle: Pc or Nc) form closely packed π-stacking dimers in 1 and 3 or one-dimensional chains in 2 and 4 with effective π-π interaction between the macrocycles. Such packing allows strong antiferromagnetic coupling between S = 1/2 spins. Magnetic interaction can be described well by the Heisenberg model for the isolated dimers in 1 and 3 with exchange interaction J/k B = -78 and -85 K, respectively. Magnetic behavior of 2 and 4 is described well by the model that includes contributions from an antiferromagnetically coupled S = 1/2 dimer (J intra) and a Heisenberg S = 1/2 chain with alternating antiferromagnetic spin exchange between the neighbors (J inter). Compound 2 demonstrates large intradimer interaction of J intra/k B = -54 K and essentially weaker interdimer exchange interactions of J inter/k B = -6 K, whereas compound 4 shows strong magnetic coupling of spins within the dimers (J intra/k B = -170 K) as well as between the dimers (J inter/k B = -40 K). Compound {CpFeII(CO)2[SnII(TPP•3-)]} (5) shows no π-π interactions between the porphyrin macrocycles, and magnetic coupling is weak in this case (Weiss temperature is -5 K). Preparation of a similar complex with indium(III) chloride phthalocyanine yields {CpFe(CO)2[In(Pc2-)]} (6). In this complex, indium(III) atoms are reduced instead of the phthalocyanine macrocycles that explains electron paramagnetic resonance silence of 6 in the 4-295 K range.
Collapse
Affiliation(s)
- Dmitri V. Konarev
- Institute
of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region 142432, Russia
| | - Alexey V. Kuzmin
- Institute
of Solid State Physics RAS, Chernogolovka, Moscow Region 142432, Russia
| | - Mikhail S. Batov
- Institute
of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region 142432, Russia
- Lomonosov
Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Salavat S. Khasanov
- Institute
of Solid State Physics RAS, Chernogolovka, Moscow Region 142432, Russia
| | - Akihiro Otsuka
- Division
of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Research
Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideki Yamochi
- Division
of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Research
Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Kitagawa
- Division
of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rimma N. Lyubovskaya
- Institute
of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region 142432, Russia
| |
Collapse
|
3
|
McKearney D, Choua S, Zhou W, Ganga-Sah Y, Ruppert R, Wytko JA, Weiss J, Leznoff DB. Ring-Oxidized Zinc(II) Phthalocyanine Cations: Structure, Spectroscopy, and Decomposition Behavior. Inorg Chem 2018; 57:9644-9655. [PMID: 30009596 DOI: 10.1021/acs.inorgchem.8b01579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A bromonium oxidizing agent was used to produce a ring-oxidized zinc phthalocyanine (PcZn), [PcZn(solvent)]•2[BArF4]2 (1·solvent), in good yield. This material is dimeric in the solid state with one axially coordinated solvent [tetrahydrofuran (THF) or 1,2-dimethoxyethane (DME)] and close intradimer ring-ring distances of 3.18 and 3.136 Å (THF and DME respectively); this proximity facilitates strong antiferromagnetic coupling to yield diamagnetic dimers. 1·THF is present in solution as a monomer and a dimer. In CH2Cl2, the dimer is favored above 0.1 mM, and it is almost exclusively present in solvents with a high dielectric constant such as acetonitrile. The material 1·THF/DME decomposes in DME to a meso-nitrogen-protonated species, [HPcZn(DME)2][BArF4] (2), which was isolated and represents the first example of such a structurally characterized, protonated, unsubstituted PcM complex. A partially oxidized dimer or "pimer" [(PcZn(DME))2]•[BArF4] (3) was also structurally characterized and has a intradimer ring-ring distance of 3.192 Å, similar to 1·THF/DME. Dimer 3 also represents the first isolated PcM-based pimer. Electron paramagnetic resonance analysis of a 1.0 mM solution of 1·DME in DME showed the production of 3 over hours by the combination of 1·DME and 2 in solution.
Collapse
Affiliation(s)
- Declan McKearney
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| | - Sylvie Choua
- Institut de Chimie , UMR 7177 CNRS-Université de Strasbourg , 4 rue Blaise Pascal , 67000 Strasbourg , France
| | - Wen Zhou
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| | - Yumeela Ganga-Sah
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| | - Romain Ruppert
- Institut de Chimie , UMR 7177 CNRS-Université de Strasbourg , 4 rue Blaise Pascal , 67000 Strasbourg , France
| | - Jennifer A Wytko
- Institut de Chimie , UMR 7177 CNRS-Université de Strasbourg , 4 rue Blaise Pascal , 67000 Strasbourg , France
| | - Jean Weiss
- Institut de Chimie , UMR 7177 CNRS-Université de Strasbourg , 4 rue Blaise Pascal , 67000 Strasbourg , France
| | - Daniel B Leznoff
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
4
|
Konarev DV, Kuzmin AV, Khasanov SS, Litvinov AL, Otsuka A, Yamochi H, Kitagawa H, Lyubovskaya RN. Dianionic Titanyl and Vanadyl (Cation + ) 2 [M IV O(Pc 4- )] 2- Phthalocyanine Salts Containing Pc 4- Macrocycles. Chem Asian J 2018; 13:1552-1560. [PMID: 29771008 DOI: 10.1002/asia.201701754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/25/2018] [Indexed: 11/10/2022]
Abstract
In this study, the titanyl and vanadyl phthalocyanine (Pc) salts (Bu4 N+ )2 [MIV O(Pc4- )]2- (M=Ti, V) and (Bu3 MeP+ )2 [MIV O(Pc4- )]2- (M=Ti, V) with [MIV O(Pc4- )]2- dianions were synthesized and characterized. Reduction of MIV O(Pc2- ) carried out with an excess of sodium fluorenone ketyl in the presence of Bu4 N+ or Bu3 MeP+ is exclusive to the phthalocyanine centers, forming Pc4- species. During reduction, the metal +4 charge did not change, implying that Pc is an non-innocent ligand. The Pc negative charge increase caused the C-N(pyr) bonds to elongate and the C-N(imine) bonds to alternate, thus increasing the distortion of Pc. Jahn-Teller effects are significant in the [eg(π*)]2 dianion ground state and can additionally distort the Pc macrocycles. Blueshifts of the Soret and Q-bands were observed in the UV/Vis/NIR when MIV O(Pc2- ) was reduced to [MIV O(Pc.3- )].- and [MIV O(Pc4- )]2- . From magnetic measurements, [TiIV O(Pc4- )]2- was found to be diamagnetic and (Bu4 N+ )2 [VIV O(Pc4- )]2- and (Bu3 MeP+ )2 [VIV O(Pc4- )]2- were found to have magnetic moments of 1.72-1.78 μB corresponding to an S=1/2 spin state owing to VIV electron spin. As a result, two latter salts show EPR signals with VIV hyperfine coupling.
Collapse
Affiliation(s)
- Dmitri V Konarev
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow region, 142432, Russia
| | - Alexey V Kuzmin
- Institute of Solid State Physics RAS, Chernogolovka, Moscow region, 142432, Russia
| | - Salavat S Khasanov
- Institute of Solid State Physics RAS, Chernogolovka, Moscow region, 142432, Russia
| | - Alexey L Litvinov
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow region, 142432, Russia
| | - Akihiro Otsuka
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Rimma N Lyubovskaya
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow region, 142432, Russia
| |
Collapse
|
5
|
Konarev DV, Troyanov SI, Shestakov AF, Yudanova EI, Otsuka A, Yamochi H, Kitagawa H, Lyubovskaya RN. Reaction of tin(iv) phthalocyanine dichloride with decamethylmetallocenes (M = Cr II and Co II). Strong magnetic coupling of spins in (Cp* 2Co +){Sn IVCl 2(Pc˙ 3-)}˙ -·2C 6H 4Cl 2. Dalton Trans 2018; 47:1243-1250. [PMID: 29299581 DOI: 10.1039/c7dt03807k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of tin(iv) phthalocyanine dichloride {SnIVCl2(Pc2-)} with decamethylmetallocenes (Cp*2M, M = Co, Cr) has been studied. Decamethylcobaltocene reduces SnIVCl2(Pc2-) to form the (Cp*2Co+){SnIVCl2(Pc˙3-)}˙-·2C6H4Cl2 (1) complex. The negative charge of {SnIVCl2(Pc˙3-)}˙- is delocalized over the Pc macrocycle providing the alternation of the C-N(imine) bonds, the appearance of new bands in the NIR range and a strong blue shift of both the Soret and Q-bands in the spectrum of 1. The magnetic moment of 1 is equal to 1.68μB at 300 K, indicating the contribution of one S = 1/2 spin of the Pc˙3- macrocycles. These macrocycles form closely packed double stacks in 1 with effective π-π interactions providing strong antiferromagnetic coupling of spins at a Weiss temperature of -80 K. Decamethylchromocene initially also reduces SnIVCl2(Pc2-) to form the [(Cp*2Cr+){SnVICl2(Pc˙3-)}˙- complex but further reaction between the ions is observed. This reaction is accompanied by the substitution of one Cp* ligand of Cp*2Cr by chloride anions originating from {SnIVCl2(Pc˙3-)}˙- to form the complex {(Cp*CrCl2)(SnIV(μ-Cl)(Pc2-))}·C6H4Cl2 (2) in which the (Cp*CrCl2) and {SnIV(Pc2-)} species are bonded through the μ-bridged Cl- anion. According to the DFT calculations, this reaction proceeds via an intermediate [(Cp*2CrCl)(SnClPc)] complex.
Collapse
Affiliation(s)
- Dmitri V Konarev
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, 142432 Russia.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Konarev DV, Kuzmin AV, Nakano Y, Khasanov SS, Otsuka A, Yamochi H, Kitagawa H, Lyubovskaya RN. Synthesis and properties of N-methylimidazole solvates of vanadium(ii), chromium(ii) and iron(ii) phthalocyanines. Strong NIR absorption in VII(MeIm)2(Pc2−). Dalton Trans 2018. [DOI: 10.1039/c8dt00459e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structures and optical and magnetic properties of N-methylimidazole (MeIm) solvates of vanadium(ii), chromium(ii) and iron(ii) phthalocyanines have been studied.
Collapse
Affiliation(s)
- Dmitri V. Konarev
- Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russia
| | | | - Yoshiaki Nakano
- Division of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | | | - Akihiro Otsuka
- Division of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Hideki Yamochi
- Division of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Hiroshi Kitagawa
- Division of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | | |
Collapse
|
7
|
Konarev DV, Kuzmin AV, Khasanov SS, Batov MS, Otsuka A, Yamochi H, Kitagawa H, Lyubovskaya RN. Salts with titanyl and vanadyl phthalocyanine radical anions. Molecular design and effect of cations on the structure and magnetic and optical properties. CrystEngComm 2018. [DOI: 10.1039/c7ce01918a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our recent data on radical anion salts of titanyl (TiIVOPc) and vanadyl (VIVOPc) phthalocyanines as well as additional new data are summarized.
Collapse
Affiliation(s)
- Dmitri V. Konarev
- Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russia
| | | | | | - Mikhail S. Batov
- Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russia
- Moscow State University
- Russia
| | - Akihiro Otsuka
- Division of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Hideki Yamochi
- Division of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Hiroshi Kitagawa
- Division of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | | |
Collapse
|
8
|
Konarev DV, Khasanov SS, Lyubovskaya RN. Effect of Deprotonation and Reduction on the Molecular Structure and Optical and Magnetic Properties of Metal-Free Phthalocyanine (Pc): Comparison of H2Pc.−and HPc−Anions. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dmitri V. Konarev
- Institute of Problems of Chemical Physics RAS; Chernogolovka Moscow region 142432 Russia
| | - Salavat S. Khasanov
- Institute of Solid State Physics RAS; Chernogolovka Moscow region 142432 Russia
| | - Rimma N. Lyubovskaya
- Institute of Problems of Chemical Physics RAS; Chernogolovka Moscow region 142432 Russia
| |
Collapse
|
9
|
Konarev DV, Khasanov SS, Ishikawa M, Nakano Y, Otsuka A, Yamochi H, Saito G, Lyubovskaya RN. Tetrabutylammonium Salts of Aluminum(III) and Gallium(III) Phthalocyanine Radical Anions Bonded with Fluoren-9-olato - Anions and Indium(III) Phthalocyanine Bromide Radical Anions. Chem Asian J 2017; 12:910-919. [PMID: 28205420 DOI: 10.1002/asia.201700138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Indexed: 11/10/2022]
Abstract
Reduction of aluminum(III), gallium(III), and indium(III) phthalocyanine chlorides by sodium fluorenone ketyl in the presence of tetrabutylammonium cations yielded crystalline salts of the type (Bu4 N+ )2 [MIII (HFl-O- )(Pc.3- )].- (Br- )⋅1.5 C6 H4 Cl2 [M=Al (1), Ga (2); HFl-O- =fluoren-9-olato- anion; Pc=phthalocyanine] and (Bu4 N+ ) [InIII Br(Pc.3- )].- ⋅0.875 C6 H4 Cl2 ⋅0.125 C6 H14 (3). The salts were found to contain Pc.3- radical anions with negatively charged phthalocyanine macrocycles, as evidenced by the presence of intense bands of Pc.3- in the near-IR region and a noticeable blueshift in both the Q and Soret bands of phthalocyanine. The metal(III) atoms coordinate HFl-O- anions in 1 and 2 with short Al-O and Ga-O bond lengths of 1.749(2) and 1.836(6) Å, respectively. The C-O bonds [1.402(3) and 1.391(11) Å in 1 and 2, respectively] in the HFl-O- anions are longer than the same bond in the fluorenone ketyl (1.27-1.31 Å). Salts 1-3 show effective magnetic moments of 1.72, 1.66, and 1.79 μB at 300 K, respectively, owing to the presence of unpaired S=1/2 spins on Pc.3- . These spins are coupled antiferromagnetically with Weiss temperatures of -22, -14, and -30 K for 1-3, respectively. Coupling can occur in the corrugated two-dimensional phthalocyanine layers of 1 and 2 with an exchange interaction of J/kB =-0.9 and -1.1 K, respectively, and in the π-stacking {[InIII Br(Pc.3- )].- }2 dimers of 3 with an exchange interaction of J/kB =-10.8 K. The salts show intense electron paramagnetic resonance (EPR) signals attributed to Pc.3- . It was found that increasing the size of the central metal atom strongly broadened these EPR signals.
Collapse
Affiliation(s)
- Dmitri V Konarev
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow region, 142432, Russia
| | - Salavat S Khasanov
- Institute of Solid State Physics RAS, Chernogolovka, Moscow region, 142432, Russia
| | - Manabu Ishikawa
- Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshiaki Nakano
- Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Akihiro Otsuka
- Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yamochi
- Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Gunzi Saito
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 468-8502, Japan.,Toyota Physical and Chemical Research Institute, 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Rimma N Lyubovskaya
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow region, 142432, Russia
| |
Collapse
|
10
|
Konarev DV, Kuzmin AV, Khasanov SS, Otsuka A, Yamochi H, Saito G, Lyubovskaya RN. Bis(N-methylimidazole)-Substituted Neutral Phthalocyanines {MIII(MeIm)2(Pc)·3-}0(M = Al, Ga) Containing Radical Trianionic Phthalocyanine Macrocycles. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dmitri V. Konarev
- Institute of Problems of Chemical Physics RAS; 142432 Chernogolovka Moscow Region Russia
| | - Alexey V. Kuzmin
- Institute of Solid State Physics RAS; Chernogolovka Moscow Region 142432, Russia
| | - Salavat S. Khasanov
- Institute of Solid State Physics RAS; Chernogolovka Moscow Region 142432, Russia
| | - Akihiro Otsuka
- Division of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku 606-8502 Kyoto Japan
| | - Hideki Yamochi
- Division of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku 606-8502 Kyoto Japan
| | - Gunzi Saito
- Faculty of Agriculture; Meijo University; 1-501 Shiogamaguchi, Tempaku-ku 468-8502 Nagoya Japan
- Toyota Physical and Chemical Research Institute; 41-1, Yokomichi 480-1192 Nagakute Aichi Japan
| | - Rimma N. Lyubovskaya
- Institute of Problems of Chemical Physics RAS; 142432 Chernogolovka Moscow Region Russia
| |
Collapse
|