1
|
Potočňák I, Bukrynov O, Kliuikov A, Holub M, Vitushkina S, Samoľová E, Čižmár E, Váhovská L. Influence of the phonon-bottleneck effect and low-energy vibrational modes on the slow spin-phonon relaxation in Kramers-ions-based Cu(II) and Co(II) complexes with 4-amino-3,5-bis-(pyridin-2-yl)-1,2,4-triazole and dicyanamide. Dalton Trans 2024; 53:6950-6964. [PMID: 38567872 DOI: 10.1039/d4dt00219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Two new complexes, bis-[4-amino-3,5-bis-(pyridin-2-yl)-1,2,4-triazole-κ2N2,N6]bis-(dicyanamide-κN8)copper(II), [Cu(abpt)2(dca)2] (1) and bis-[4-amino-3,5-bis-(pyridin-2-yl)-1,2,4-triazole-κ2N2,N6]bis-(dicyanamide-κN8)cobalt(II), [Co(abpt)2(dca)2] (2), have been prepared and magneto-structurally characterised. Single crystal studies of both complexes have shown that their crystal structures are molecular, in which the central atoms are six-coordinated in the form of a distorted octahedron by two bidentate abpt and two monodentate dca ligands. Even if both complexes have the same composition and crystallize in the same P1̄ space group, they are not isostructural. Both structures contain strong intermolecular N-H⋯N hydrogen bonds and π-π stacking interactions. IR spectra are consistent with the solved structures of both complexes and confirmed the terminal character of the dca ligands and the bidentate coordination of the abpt ligands. The analysis of the magnetic properties showed that both complexes exhibit field-induced slow spin-phonon relaxation. In both complexes, the slow spin-phonon relaxation is influenced by a severe phonon-bottleneck effect that affects the direct process, a dominant relaxation mechanism at low temperatures in both complexes. The phonon-bottleneck effect in 1 was suppressed by simply reducing the crystallite size, and further analysis of the field dependence of the relaxation time yielded the characteristic energy of vibrational modes of 11 cm-1 participating in the Raman process at low magnetic fields. The analysis of magnetic properties and ab initio calculations confirmed that 2 represents a system with a moderate uniaxial anisotropy yielding an average energy barrier of 82 cm-1 (from all four nonequivalent Co(II) sites in the structure of 2).
Collapse
Affiliation(s)
- Ivan Potočňák
- P. J. Šafárik University in Košice, Faculty of Science, Institute of Chemistry, Department of Inorganic Chemistry, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Oleksandr Bukrynov
- V. N. Karazin Kharkiv National University, Faculty of Chemistry, Department of Applied Chemistry, Svobody sq. 4, UA-61022 Kharkiv, Ukraine
| | - Andrii Kliuikov
- P. J. Šafárik University in Košice, Faculty of Science, Institute of Physics, Park Angelinum 9, SK-041 54 Košice, Slovakia
- Slovak Metrological Institute, Karloveská 63, SK-842 55 Bratislava, Slovakia
| | - Mariia Holub
- P. J. Šafárik University in Košice, Faculty of Science, Institute of Physics, Park Angelinum 9, SK-041 54 Košice, Slovakia
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, FR-91190 Saint-Aubin, France
| | - Svitlana Vitushkina
- V. N. Karazin Kharkiv National University, Faculty of Chemistry, Department of Applied Chemistry, Svobody sq. 4, UA-61022 Kharkiv, Ukraine
- Institute of Experimental Physics of the Slovak Academy of Sciences, Department of Materials Physics, Watsonova 47, SK-040 01 Košice, Slovakia
| | - Erika Samoľová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
| | - Erik Čižmár
- P. J. Šafárik University in Košice, Faculty of Science, Institute of Physics, Park Angelinum 9, SK-041 54 Košice, Slovakia
| | - Lucia Váhovská
- University of Veterinary Medicine and Pharmacy in Košice, Department of Chemistry, Biochemistry and Biophysics, Komenského 73, SK-041 84 Košice, Slovakia.
| |
Collapse
|
2
|
Synthesis and characterization of a novel antiferromagnetic cobalt(II) chain complex. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
3
|
Field-Induced Slow Magnetic Relaxation in Co II Cyclopropane-1,1-dicarboxylates. Molecules 2022; 27:molecules27196537. [PMID: 36235074 PMCID: PMC9572064 DOI: 10.3390/molecules27196537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
New CoII substituted malonate field-induced molecular magnets {[Rb6Co3(cpdc)6(H2O)12]∙6H2O}n (1) and [Cs2Co(cpdc)2(H2O)6]n (2) (where cpdc2− stands for cyclopropane-1,1-dicarboxylic acid dianions) were synthesized. Both compounds contain mononuclear bischelate fragments {CoII(cpdc)2(H2O)2}2− where the quasi-octahedral cobalt environment (CoO6) is complemented by water molecules in apical positions. The alkali metal atoms play the role of connectors between the bischelate fragments to form 3D and 2D polymeric structures for 1 and 2, respectively. Analysis of dc magnetic data using the parametric Griffith Hamiltonian for high-spin CoII supported by ab initio calculations revealed that both compounds have an easy axis of magnetic anisotropy. Compounds 1 and 2 exhibit slow magnetic relaxation under an external magnetic field (HDC = 1000 and 1500 Oe, respectively).
Collapse
|
4
|
Ghosh S, Kamilya S, Mehta S, Herchel R, Kiskin M, Veber S, Fedin M, Mondal A. Effect of Ligand Chain Length for Tuning of Molecular Dimensionality and Magnetic Relaxation in Redox Active Cobalt(II) EDOT Complexes (EDOT = 3,4-Ethylenedioxythiophene). Chem Asian J 2022; 17:e202200404. [PMID: 35617522 DOI: 10.1002/asia.202200404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Four cobalt(II) complexes, [Co(L1)2(NCX)2(MeOH)2] (X = S (1), Se (2)) and {[Co(L2)2(NCX)2]}n (X = S (3), Se (4)) (L1 = 2,5dipyridyl-3,4,-ethylenedioxylthiophene and L2 = 2,5diethynylpyridinyl-3,4-ethylenedioxythiophene), were synthesized by incorporating ethylenedioxythiophene based redox-active luminescence ligands. All these complexes have been well characterized using single-crystal X-ray diffraction analyses, spectroscopic and magnetic investigations. Magneto-structural studies showed that 1 and 2 adopt a mononuclear structure with CoN4O2 octahedral coordination geometry while 3 and 4 have a 2D [4 x 4] rhombic grid coordination networks (CNs) where each cobalt(II) center is in a CoN6 octahedral coordination environment. Static magnetic measurements reveal that all four complexes displayed a high spin (HS) (S = 3/2) state between 2 and 280 K which was further confirmed by X-band and Q-band EPR studies. Remarkably, along with the molecular dimensionality (0D and 2D) the modification in the axial coligands lead to a significant difference in the dynamic magnetic properties of the monomers and CNs at low temperatures. All complexes display slow magnetic relaxation behavior under an external dc magnetic field. For the complexes with NCS- as coligand observed higher energy barrier for spin reversal in comparison to the complexes with NCSe- as coligand, while mononuclear complex 1 exhibited a higher energy barrier than that of CN 3. Theoretical calculations at the DFT and CASSCF level of theory have been performed to get more insight into the electronic structure and magnetic properties of all four complexes.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46, Olomouc, Czech Republic
| | - Mikhail Kiskin
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991, Moscow, Russia
| | - Sergey Veber
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 1, 630090, Novosibirsk, Russia
| | - Matvey Fedin
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 1, 630090, Novosibirsk, Russia
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| |
Collapse
|
5
|
Plyuta N, Petrusenko SR, Kokozay V, Cauchy T, Lloret F, Julve M, Cano J, Avarvari N. Field-induced mononuclear cobalt(II) single-molecule magnet (SMM) based on a benzothiadiazole-ortho-vanillin ligand. Dalton Trans 2022; 51:4760-4771. [DOI: 10.1039/d1dt04274b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique π-conjugated benzothiadiazole-ortho-vanillin ligand (HL), characterized by single crystal X-ray diffraction and DFT calculations, has been prepared by condensation between 4-amino-benzothiadiazole (BTD) and ortho-vanillin. Its reaction with cobalt(II) acetate...
Collapse
|
6
|
Korchagin DV, Gureev YE, Yureva EA, Shilov GV, Akimov AV, Misochko EY, Morgunov RB, Zakharov KV, Vasiliev AN, Palii AV, Lohmiller T, Holldack K, Aldoshin SM. Field-induced single-ion magnet based on a quasi-octahedral Co(II) complex with mixed sulfur-oxygen coordination environment. Dalton Trans 2021; 50:13815-13822. [PMID: 34519734 DOI: 10.1039/d1dt02413b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and characterization of structure and magnetic properties of the quasi-octahedral complex (pipH2)[Co(TDA)2] 2H2O (I), (pipH22+ = piperazine dication, TDA2- = thiodiacetic anion) are described. X-ray diffraction studies reveal the first coordination sphere of the Co(II) ion, consisting of two chelating tridentate TDA ligands with a mixed sulfur-oxygen strongly elongated octahedral coordination environment. SQUID magnetometry, frequency-domain Fourier-transform (FD-FT) THz-EPR spectroscopy, and high-level ab initio SA-CASSCF/NEVPT2 quantum chemical calculations reveal a strong "easy-plane" type magnetic anisotropy (D ≈ +54 cm-1) of complex I. The complex shows field-induced slow relaxation of magnetization at an applied DC field of 1000 Oe.
Collapse
Affiliation(s)
- D V Korchagin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov Av., Chernogolovka, Russian Federation, 142432.
| | - Ya E Gureev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov Av., Chernogolovka, Russian Federation, 142432. .,M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - E A Yureva
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov Av., Chernogolovka, Russian Federation, 142432.
| | - G V Shilov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov Av., Chernogolovka, Russian Federation, 142432.
| | - A V Akimov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov Av., Chernogolovka, Russian Federation, 142432.
| | - E Ya Misochko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov Av., Chernogolovka, Russian Federation, 142432.
| | - R B Morgunov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov Av., Chernogolovka, Russian Federation, 142432.
| | - K V Zakharov
- M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - A N Vasiliev
- M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,National University of Science and Technology "MISiS", Moscow, 119049, Russia
| | - A V Palii
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov Av., Chernogolovka, Russian Federation, 142432. .,Institute of Applied Physics, Academy of Sciences of Moldova, Kishinev, Moldova
| | - T Lohmiller
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - K Holldack
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - S M Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov Av., Chernogolovka, Russian Federation, 142432.
| |
Collapse
|
7
|
Zhou T, Zhang C, Zhang Z, Zhang Y, Xiao Y. Synthesis, Crystal Structures, Magnetic Properties and Hirshfeld Surface Analysis of Cu/Mn Coordination Polymers. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Zhou
- College of Environmental Science and Engineering Guangdong University of Petrochemical Technology Maoming Guangdong 525000 P. R. China
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 P. R. China
| | - Chong Zhang
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 P. R. China
| | - Zilong Zhang
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 P. R. China
| | - Yujie Zhang
- College of Environmental Science and Engineering Guangdong University of Petrochemical Technology Maoming Guangdong 525000 P. R. China
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 P. R. China
| | - Yu Xiao
- College of Environmental Science and Engineering Guangdong University of Petrochemical Technology Maoming Guangdong 525000 P. R. China
| |
Collapse
|
8
|
de Campos NR, Simosono CA, Landre Rosa IM, da Silva RMR, Doriguetto AC, do Pim WD, Gomes Simões TR, Valdo AKSM, Martins FT, Sarmiento CV, Nunes WC, Guedes GP, Pedroso EF, Pereira CLM, Stumpf HO, Lloret F, Julve M, Marinho MV. Building-up host-guest helicate motifs and chains: a magneto-structural study of new field-induced cobalt-based single-ion magnets. Dalton Trans 2021; 50:10707-10728. [PMID: 34308946 DOI: 10.1039/d1dt01693h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we present the synthetic pathway, a refined structural description, complete solid-state characterization and the magnetic properties of four new cobalt(ii) compounds of formulas [Co(H2O)6][Co2(H2mpba)3]·2H2O·0.5dmso (1), [Co(H2O)6][Co2(H2mpba)3]·3H2O·0.5dpss (2), [Co2(H2mpba)2(H2O)4]n·4nH2O (3), and [Co2(H2mpba)2(CH3OH)2(H2O)2]n·0.5nH2O·2ndpss (4) [dpss = 2,2'-dipyridyldisulfide and H4mpba = 1,3-phenylenebis(oxamic) acid], where 2 and 4 were obtained from [Co(dpss)Cl2] (Pre-I) as the source of cobalt(ii). All four compounds are air-stable and were prepared under ambient conditions. 1 and 2 were obtained from a slow diffusion method [cobalt(ii) : H2mpba2- molar ratio used 1 : 1] and their structures are made up of [Co2(H2mpba)3]2- anionic helicate units and [Co(H2O)6]2+ cations, exhibiting supramolecular three-dimensional structures. Interestingly, a supramolecular honeycomb network between the helicate units interacting with each other through R22(10) type hydrogen bonds occurs in 2 hosting one co-crystallized dpss molecule. On the other hand, for the first time, linear (3) and zigzag (4) cobalt(ii) chains were isolated by slow evaporation of stirred solutions of mixed solvents with cobalt(ii) : H2mpba2- in 1 : 2 molar ratio at room temperature. Magnetic measurements of Pre-I revealed a quasi magnetically isolated S = 3/2 spin state with a significant second-order spin-orbit contribution as expected for tetrahedrally coordinated cobalt(ii) ions. The analysis of the variable temperature static (dc) magnetic susceptibility data through first- (1 and 3) and second-order spin-orbit coupling models (2 and 4) reveals the presence of magnetically non-interacting high-spin cobalt(ii) ions with easy-axis (1 and 4)/easy-plane magnetic anisotropies (2 and 4) with low rhombic distortions. Dynamic (ac) magnetic measurements for Pre-I and 1-4 below 8.0 K show that they are examples of field-induced Single-Ion Magnets (SIMs).
Collapse
Affiliation(s)
- Nathália R de Campos
- Instituto de Química, Universidade Federal de Alfenas, Campus Santa Clara, Alfenas, MG 37133-840, Brazil.
| | - Cintia A Simosono
- Instituto de Química, Universidade Federal de Alfenas, Campus Santa Clara, Alfenas, MG 37133-840, Brazil.
| | - Iara M Landre Rosa
- Instituto de Química, Universidade Federal de Alfenas, Campus Santa Clara, Alfenas, MG 37133-840, Brazil.
| | - Rafaela M R da Silva
- Instituto de Química, Universidade Federal de Alfenas, Campus Santa Clara, Alfenas, MG 37133-840, Brazil.
| | - Antônio C Doriguetto
- Instituto de Química, Universidade Federal de Alfenas, Campus Santa Clara, Alfenas, MG 37133-840, Brazil.
| | - Walace D do Pim
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG 30421-169, Brazil
| | | | - Ana Karoline S M Valdo
- Instituto de Física, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO 74690-900, Brazil
| | - Felipe T Martins
- Instituto de Física, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO 74690-900, Brazil
| | - Charlie V Sarmiento
- Instituto de Física, Universidade Federal Fluminense, Niterói, Rio de Janeiro, RJ 24210-346, Brazil
| | - Wallace C Nunes
- Instituto de Física, Universidade Federal Fluminense, Niterói, Rio de Janeiro, RJ 24210-346, Brazil
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, 24020-141, Brazil
| | - Emerson F Pedroso
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG 30421-169, Brazil
| | - Cynthia L M Pereira
- Departamento de Química-ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Humberto O Stumpf
- Departamento de Química-ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Universitat de València, C/catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Miguel Julve
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Universitat de València, C/catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Maria Vanda Marinho
- Instituto de Química, Universidade Federal de Alfenas, Campus Santa Clara, Alfenas, MG 37133-840, Brazil.
| |
Collapse
|
9
|
Wang M, Xu H, Sun T, Cui H, Zhang YQ, Chen L, Tang Y. Optimal N–Co–N bite angle for enhancing the magnetic anisotropy of zero-field Co(II) single-ion magnets in tetrahedral [N4] coordination environment. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Palacios-Corella M, García-López V, Sánchez-Sánchez C, Clemente-Juan JM, Clemente-León M, Coronado E. Insertion of single-ion magnets based on mononuclear Co(II) complexes into ferromagnetic oxalate-based networks. Dalton Trans 2021; 50:5931-5942. [PMID: 33949535 DOI: 10.1039/d1dt00595b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 1 : 2 and 1 : 1 Co(ii) complexes of the L ligand (L = 6-(3,5-diamino-2,4,6-triazinyl)2,2'-bipyridine) with formulas [CoII(L)2](ClO4)2·0.5MeCN·Et2O (1) and [CoII(L)(CH3CN)2(H2O)](ClO4)2·MeCN (2) have been prepared. The structural and magnetic characterization of the two compounds shows that they contain octahedral high-spin Co(ii) and present a field-induced slow relaxation of the magnetization. 1 has been inserted into a bimetallic oxalate-based network leading to a novel achiral 3D compound of formula [CoII(L)2][MnIICrIII(ox)3]2·(solvate) (3) exhibiting ferromagnetic ordering below 4.6 K. EPR measurements suggest a weak magnetic coupling between the two sublattices.
Collapse
Affiliation(s)
- M Palacios-Corella
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - V García-López
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - C Sánchez-Sánchez
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - J M Clemente-Juan
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - M Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - E Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| |
Collapse
|
11
|
Ohmagari H, Nakaya M, Tanaka K, Zenno H, Akiyoshi R, Sekine Y, Zhang Y, Min KS, Hasegawa M, Lindoy LF, Hayami S. Magnetism in a helicate complexes arising with the tetradentate ligand. Dalton Trans 2021; 50:494-498. [PMID: 33367344 DOI: 10.1039/d0dt03990j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of [M(dimphen)(NCS)2] (1; M = FeII), (2; M = CoII), (3; M = MnII) and [Fe(dimphen)(NCSe)2] (4), where dimphen = [1,2-bis(9-methyl-1,10-phenanthrolin-2-yl)ethane], are reported. The crystal packing structures of 1-3, show intermolecular π-π stacking and NCSSCN interactions. The complex 1 shows ferromagnetic interaction, and the complex 2 displays single-molecular magnet behaviour.
Collapse
Affiliation(s)
- Hitomi Ohmagari
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Manabu Nakaya
- Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Kaisei Tanaka
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Ryohei Akiyoshi
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. and Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yingjie Zhang
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Kil Sik Min
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Miki Hasegawa
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. and Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| |
Collapse
|
12
|
Kliuikov A, Bukrynov O, Čižmár E, Váhovská L, Vitushkina S, Samoľová E, Potočňák I. Syntheses, structures and magnetic properties of two isostructural dicyanamide-bridged 2D polymers. NEW J CHEM 2021. [DOI: 10.1039/d1nj00726b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexes [Co(biq)(μ1,5-dca)2]n (1) and [Ni(biq)(μ1,5-dca)2]n (2) (biq is 2,2′-biquinoline, dca is dicyanamide anion, N(CN)2−) have been characterized by crystal structure analysis, and spectral and magnetic measurements.
Collapse
Affiliation(s)
- Andrii Kliuikov
- P. J. Šafárik University in Košice
- Faculty of Science
- Institute of Physics
- SK-041 54 Košice
- Slovakia
| | - Oleksandr Bukrynov
- V.N. Karazin Kharkiv National University
- Faculty of Chemistry
- Department of Applied Chemistry
- UA-61022 Kharkiv
- Ukraine
| | - Erik Čižmár
- P. J. Šafárik University in Košice
- Faculty of Science
- Institute of Physics
- SK-041 54 Košice
- Slovakia
| | - Lucia Váhovská
- University of Veterinary Medicine and Pharmacy in Košice
- Department of Chemistry
- Biochemistry and Biophysics
- SK-041 84 Košice
- Slovakia
| | - Svitlana Vitushkina
- V.N. Karazin Kharkiv National University
- Faculty of Chemistry
- Department of Applied Chemistry
- UA-61022 Kharkiv
- Ukraine
| | - Erika Samoľová
- Institute of Physics of the Czech Academy of Sciences
- 182 21 Prague 8
- Czech Republic
| | - Ivan Potočňák
- P. J. Šafárik University in Košice
- Faculty of Science
- Institute of Chemistry
- Department of Inorganic Chemistry
- SK-041 54 Košice
| |
Collapse
|
13
|
Świtlicka A, Machura B, Bieńko A, Kozieł S, Bieńko DC, Rajnák C, Boča R, Ozarowski A, Ozerov M. Non-traditional thermal behavior of Co( ii) coordination networks showing slow magnetic relaxation. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00667c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three new Co(ii) coordination polymers show the DC magnetic data consistent with the S = 3/2 spin system with large zero-field splitting D > 0, which was confirmed by HF EPR and FIRMS measurements.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9 Szkolna St., 40-006 Katowice, Poland
| | - Barbara Machura
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9 Szkolna St., 40-006 Katowice, Poland
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Dariusz C. Bieńko
- Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| |
Collapse
|
14
|
Gao X, Geng R, Su F. Three Co/Ni(II)-MOFs with dinuclear metal units constructed by biphenyl-3,3′,5,5′-tetracarboxylic acid and N-donor ligands: Synthesis, structures, and magnetic properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
X-ray Structure and Magnetic Properties of Heterobimetallic Chains Based on the Use of an Octacyanidodicobalt(III) Complex as Metalloligand. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The assembly of [Co2III(μ-2,5-dpp)(CN)8]2− anions and [MII(CH3OH)2(DMSO)2]2+ cations resulted into the formation of two heterobimetallic 1D coordination polymers of formula [MII(CH3OH)2(DMSO)2(μ-NC)2Co2III(μ-2,5-dpp)(CN)6]n·4nCH3OH [M = CoII (1)/FeII (2) and 2,5-dpp = 2,5-bis(2-pyridyl)pyrazine. The [Co2III(μ-2,5-dpp)(CN)8]2− metalloligand coordinates the paramagnetic [MII(CH3OH)2(DMSO)2]2+ complex cations, in a bis-monodentate fashion, to give rise to neutral heterobimetallic chains. Cryomagnetic dc (1.9–300 K) and ac (2.0–13 K) magnetic measurements for 1 and 2 show the presence of Co(II)HS (1) and Fe(II)HS (2) ions (HS – high-spin), respectively, with D values of +53.7(5) (1) and −5.1(3) cm−1 (2) and slow magnetic relaxation for 1, this compound being a new example of SIM with transversal magnetic anisotropy. Low-temperature Q-band EPR study of 1 confirms that D value is positive, which reveals the occurrence of a strong asymmetry in the g-tensors and allows a rough estimation of the E/D ratio, whereas 2 is EPR silent. Theoretical calculations by CASSCF/NEVPT2 on 1 and 2 support the results from magnetometry and EPR. The analysis of the ac magnetic measurements of 1 shows that the relaxation of M takes place in the ground state under external magnetic dc fields through dominant Raman and direct spin-phonon processes.
Collapse
|
16
|
Hrubý J, Dvořák D, Squillantini L, Mannini M, van Slageren J, Herchel R, Nemec I, Neugebauer P. Co(II)-Based single-ion magnets with 1,1'-ferrocenediyl-bis(diphenylphosphine) metalloligands. Dalton Trans 2020; 49:11697-11707. [PMID: 32789384 DOI: 10.1039/d0dt01512a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report on investigations of magnetic and spectroscopic properties of three heterobimetallic Fe(ii)-Co(ii) coordination compounds based on the tetracoordinate {CoP2X2} core encapsulated by dppf metalloligand, where X = Cl (1), Br (2), I (3), dppf = 1,1'-ferrocenediyl -bis(diphenylphosphine). The analysis of static magnetic data has revealed the presence of axial magnetic anisotropy in compounds (1) and (2) and this was further confirmed by high-frequency electron spin resonance (HF-ESR) spectroscopy. Dynamic magnetic data confirmed that (1) and (2) behave as field-induced Single-Ion Magnets (SIMs). Together with bulk studies, we have also tested the possibility of depositing (2) as thick films on Au(111), glass, and polymeric acetate by drop-casting as well as thermal sublimation, a key aspect for the development of future devices embedding these magnetic objects.
Collapse
Affiliation(s)
- J Hrubý
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - D Dvořák
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - L Squillantini
- Department of Chemistry "Ugo Schiff", University of Florence and INSTM Research Unit of Florence, via Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - M Mannini
- Department of Chemistry "Ugo Schiff", University of Florence and INSTM Research Unit of Florence, via Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - J van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - R Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - I Nemec
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic. and Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - P Neugebauer
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| |
Collapse
|
17
|
Paul A, Viciano-Chumillas M, Puschmann H, Cano J, Manna SC. Field-induced slow magnetic relaxation in mixed valence di- and tri-nuclear Co II-Co III complexes. Dalton Trans 2020; 49:9516-9528. [PMID: 32608402 DOI: 10.1039/d0dt00588f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel mixed valence CoII-CoIII complexes, namely [CoIICoIII(L1)(ab)(mb)2(H2O)]·dmf (1) and [CoCoII(L2)4(H2O)4]·2H2O (2) [H2L1 = (E)-2-((1-hydroxybutan-2-ylimino)methyl)-6-methoxyphenol, ab = 2-amino-butan-1-ol anion, mb = p-methyl benzoate, H2L2 = 3-((2-hydroxy-3-methoxy-benzylidene)-amino)-propionic acid, and dmf = N,N-dimethyl-formamide], were synthesized and characterized by single crystal X-ray diffraction and magnetic studies at low temperature. The structure determination reveals that both complexes belong to the monoclinic system with P21/c (1) and I2/a (2) space groups. Complex 1 is a dinuclear CoIIICoII compound with distorted octahedral cobalt centers showing different coordination environments. In 2, a bent trinuclear CoCoII complex, the coordination environments around the two terminal CoIII sites are alike, whereas they are different in the central CoII ion. Alternating current/direct current (ac/dc) magnetic studies revealed that both complexes show field-induced slow magnetic relaxation. The dc magnetic susceptibility and magnetization data were analyzed with the following Hamiltonianwhere D and E are the axial and rhombic zero-field splitting (zfs) parameters, respectively, and a good agreement between experimental and simulated results was found using the parameters g⊥ = 2.585, g∥ = 2.437, D = +98.1 cm-1, E/D = 0.008 and F = 8.2× 10-5 for 1 and g⊥ = 2.580, g∥ = 2.580, D = +55.4 cm-1, and E/D = 0.000 for 2.
Collapse
Affiliation(s)
- Aparup Paul
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| | | | | | | | | |
Collapse
|
18
|
Zhang YJ, Yin L, Li J, Hu ZB, Ouyang ZW, Song Y, Wang Z. Synthesis, crystal structures, HF-EPR, and magnetic properties of six-coordinate transition metal (Co, Ni, and Cu) compounds with a 4-amino-1,2,4-triazole Schiff-base ligand. RSC Adv 2020; 10:12833-12840. [PMID: 35492139 PMCID: PMC9051221 DOI: 10.1039/c9ra10851c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
We have synthesized a series of transition metal compounds [M(L)2(H2O)2] (M = Co (1), Ni (2), and Cu (3)) by using the 4-amino-1,2,4-triazole Schiff-base ligand via the hydrothermal methods. They are all mononuclear compounds with the octahedral geometry. Direct-current magnetic and HF-EPR measurements were combined to reveal the negative D values (-28.78 cm-1, -10.79 cm-1) of complexes 1 and 2, showing the easy-axis magnetic anisotropies of compounds 1 and 2. Applying a dc field of 800 Oe at 2.0 K, the slow magnetic relaxation effects were observed in compound 1, which is a remarkable feature of single-ion magnets.
Collapse
Affiliation(s)
- Ya-Jie Zhang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Lei Yin
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Jing Li
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| |
Collapse
|
19
|
Świtlicka A, Machura B, Kruszynski R, Moliner N, Carbonell JM, Cano J, Lloret F, Julve M. Magneto-structural diversity of Co(ii) compounds with 1-benzylimidazole induced by linear pseudohalide coligands. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00752h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magneto-structural diversity of 1-benzylimidazole-containing cobalt(ii) compounds with linear pseudohalide ions (NCS−, NCO−, and N3−) is explored.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Rafał Kruszynski
- Department of X-ray Crystallography and Crystal Chemistry
- Institute of General and Ecological Chemistry
- Lodz University of Technology
- 90-924 Łodz
- Poland
| | - Nicolás Moliner
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - José Miguel Carbonell
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|
20
|
Palacios MA, Díaz-Ortega IF, Nojiri H, Suturina EA, Ozerov M, Krzystek J, Colacio E. Tuning magnetic anisotropy by the π-bonding features of the axial ligands and the electronic effects of gold( i) atoms in 2D {Co(L) 2[Au(CN) 2] 2} n metal–organic frameworks with field-induced single-ion magnet behaviour. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00996b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AuI atoms play an important role in determining the anisotropy of CoII nodes in 2D AuI–CoII field-induced SIMs.
Collapse
Affiliation(s)
- María A. Palacios
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Ismael F. Díaz-Ortega
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Hiroyuki Nojiri
- Institute for Materials Research
- Tohoku University
- Sendai
- Japan
| | - Elizaveta A. Suturina
- Department of Chemistry
- University of Bath
- Wessex House 1.28
- University of Bath
- Bath BA2 7AY
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - J. Krzystek
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - Enrique Colacio
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| |
Collapse
|
21
|
Palion-Gazda J, Choroba K, Machura B, Switlicka A, Kruszynski R, Cano J, Lloret F, Julve M. Influence of the pyrazine substituent on the structure and magnetic properties of dicyanamide-bridged cobalt(ii) complexes. Dalton Trans 2019; 48:17266-17280. [PMID: 31713552 DOI: 10.1039/c9dt02976a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Substituted pyrazines were successfully used to prepare two new coordination polymers of formulas {[Co(dca)2(NH2pyz)2]·H2O}n (1) and [Co3(dca)6(HOpyz)5(H2O)2]n (2) [dca = dicyanamide, NH2pyz = 2-aminopyrazine and HOpyz = 2-hydroxypyrazine] whose structures were determined by single-crystal X-ray crystallography. The structure of 1 consists of a two-dimensional rhombus grid of cobalt(ii) ions where the dca ligand adopts the μ1,5 bridging mode with trans-positioned monodentate NH2pyz molecules completing the six-coordination around each metal ion. Compound 2 exhibits a stair-like two-dimensional structure where the intralayer connections are performed by the dca and HOpyz groups exhibiting μ1,5 and bis-monodentate coordination modes, respectively. The values of the cobalt-cobalt separation through the dca bridges are 8.2107(3) (1) and 8.4746(4) and 8.5249(4) Å (2) whereas the value through the hydroxypyrazine is 7.2052(6) Å (2). Solid-state direct-current magnetic susceptibility analyses in the temperature range of 1.9-300 K for 1 and 2 reveal the occurrence of magnetically isolated high-spin cobalt(ii) ions with a significant contribution to the magnetic moment (1 and 2), D = +95.4 (1) and +76.5 cm-1 (2) and the antiferromagnetically coupled pairs of cobalt(ii) centres through the bis-monodentate 2-hydroxypyrazine, J = -0.3 cm-1 (2). Both compounds exhibit frequency dependence of the out-of-phase alternating current (ac) magnetic susceptibility (χ''M) under non-zero applied dc fields, a feature which is characteristic of single-ion magnet behaviour (SIM). Q-band EPR studies on the polycrystalline samples of 1 and 2 at low temperatures confirm the positive sign of D and reveal the occurrence of a strong asymmetry in the g-tensors. Theoretical calculations by CASSCF/NEVPT2 support these results. An analysis of the dynamic behaviour of 1 and 2 suggests that the relaxation of the magnetization occurs in the ground state under applied fields through two Orbach processes possibly bound to low-lying vibrational modes in the high temperature range, and to the slowing down of the fast interconversion between the two contributions of the ground Kramers doublet at lower temperatures induced by the applied dc field.
Collapse
Affiliation(s)
- Joanna Palion-Gazda
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna St. 9, 40-006 Katowice, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ma D, Peng G, Zhang YY, Li B. Field-induced slow magnetic relaxation in two-dimensional and three-dimensional Co(ii) coordination polymers. Dalton Trans 2019; 48:15529-15536. [PMID: 31314024 DOI: 10.1039/c9dt02070e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two coordination polymers formulated as [Co(1,4-bimb)0.5(5-aip)(H2O)]n (1) and [Co(1,4-bib)1.5(5-hip)(H2O)]n (2) (1,4-bimb = 1,4-bis(imidazol-1-ylmethyl)benzene, 5-aip = 5-aminoisophthalic acid, 1,4-bib = 1,4-bis(1-imidazolyl)benzene and 5-hip = 5-hydroxyisophthalic acid) have been prepared and structurally characterized. Complex 1 is a two-dimensional (2D) network where Co(ii) is six coordinate in a CoO4N2 coordination environment, while the structure of 2 consists of a three-dimensional (3D) framework built from mononuclear Co(ii) units with distorted octahedral geometry as nodes. Static magnetic studies show that first-order orbital angular momentum may play an important role in the magnetic properties of 1, whereas strong easy-axis anisotropy (D = -102 cm-1) was observed in 2. Alternating current (ac) susceptibility measurements demonstrate that both the complexes display field-induced single ion magnet (SIM) behavior.
Collapse
Affiliation(s)
- Deyun Ma
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, P. R. China
| | - Guo Peng
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China. and Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Ying-Ying Zhang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.
| |
Collapse
|
23
|
Kobayashi F, Ohtani R, Nakamura M, Lindoy LF, Hayami S. Slow Magnetic Relaxation Triggered by a Structural Phase Transition in Long-Chain-Alkylated Cobalt(II) Single-Ion Magnets. Inorg Chem 2019; 58:7409-7415. [PMID: 31117627 DOI: 10.1021/acs.inorgchem.9b00543] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The behavior of single-ion magnets (SIMs) that reflects large distortions of their coordination environments caused by the packing of long alkyl chains for two Co(II) complexes of the type [Co(C n-terpy)2](BF4)2 (C n-terpy = 4'-alkoxy-2,2':6',2″-terpyridine; n = 10 (1), 16 (2)) is reported. 1·2MeOH, which features a highly distorted octahedral high-spin Co(II) center, exhibits field-induced slow magnetic relaxation under an applied dc field of 1000 Oe. Further detailed analysis of the relaxation process indicated the prevalence of the Raman process at low temperature. Surprisingly, 2 shows a reverse spin transition (rST) and also exhibits remarkable field-induced SIM behavior, revealing the presence of magnetic anisotropy for this high-spin Co(II) species that is triggered by a structural phase transition. We present here the first examples of the coexistence of field-induced slow magnetic relaxation and rST associated with structural phase transitions involving long-alkyl-chain conformational changes from gauche to anti. These results indicate the prospect of inducing SIM properties in other distorted high-spin Co(II) species bearing long alkyl chains.
Collapse
Affiliation(s)
- Fumiya Kobayashi
- Department of Chemistry, Graduate School of Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| | - Ryo Ohtani
- Department of Chemistry, Graduate School of Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| | - Leonard F Lindoy
- School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan.,Institute of Pulsed Power Science (IPPS) , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| |
Collapse
|
24
|
Ishizaki T, Fukuda T, Akaki M, Fuyuhiro A, Hagiwara M, Ishikawa N. Synthesis of a Neutral Mononuclear Four-Coordinate Co(II) Complex Having Two Halved Phthalocyanine Ligands That Shows Slow Magnetic Relaxations under Zero Static Magnetic Field. Inorg Chem 2019; 58:5211-5220. [DOI: 10.1021/acs.inorgchem.9b00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshiharu Ishizaki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takamitsu Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mitsuru Akaki
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Fuyuhiro
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masayuki Hagiwara
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Naoto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
25
|
Świtlicka A, Palion-Gazda J, Machura B, Cano J, Lloret F, Julve M. Field-induced slow magnetic relaxation in pseudooctahedral cobalt(ii) complexes with positive axial and large rhombic anisotropy. Dalton Trans 2019; 48:1404-1417. [DOI: 10.1039/c8dt03965h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation, X-ray crystal structure, spectroscopic and variable-temperature dc and ac magnetic properties of two six-coordinate cobalt(ii) complexes of formula [Co(bim)4(tcm)2] (1) and [Co(bmim)4(tcm)2] (2) are reported.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joanna Palion-Gazda
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
- Fundació General de la Universitat de València (FGUV)
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|
26
|
Shi L, Shen FX, Shao D, Zhang YQ, Wang XY. Syntheses, structures, and magnetic properties of three two-dimensional cobalt(ii) single-ion magnets with a CoIIN4X2 octahedral geometry. CrystEngComm 2019. [DOI: 10.1039/c9ce00030e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three two-dimensional CoII SIMs with (4,4) layer structures have been synthesized and characterized structurally and magnetically.
Collapse
Affiliation(s)
- Le Shi
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Fu-Xing Shen
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Dong Shao
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
27
|
Świtlicka A, Machura B, Penkala M, Bieńko A, Bieńko DC, Titiš J, Rajnák C, Boča R, Ozarowski A, Ozerov M. Slow Magnetic Relaxation in Cobalt(II) Field-Induced Single-Ion Magnets with Positive Large Anisotropy. Inorg Chem 2018; 57:12740-12755. [DOI: 10.1021/acs.inorgchem.8b01906] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Dariusz C. Bieńko
- Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
28
|
García-López V, Orts-Mula F, Palacios-Corella M, Clemente-Juan J, Clemente-León M, Coronado E. Field-induced slow relaxation of magnetization in a mononuclear Co(II) complex of 2,6-bis(pyrazol-1-yl)pyridine functionalized with a carboxylic acid. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Rigamonti L, Bridonneau N, Poneti G, Tesi L, Sorace L, Pinkowicz D, Jover J, Ruiz E, Sessoli R, Cornia A. A Pseudo-Octahedral Cobalt(II) Complex with Bispyrazolylpyridine Ligands Acting as a Zero-Field Single-Molecule Magnet with Easy Axis Anisotropy. Chemistry 2018; 24:8857-8868. [PMID: 29655240 DOI: 10.1002/chem.201801026] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 01/31/2023]
Abstract
The homoleptic mononuclear compound [Co(bpp-COOMe)2 ](ClO4 )2 (1) (bpp-COOMe=methyl 2,6-di(pyrazol-1-yl)pyridine-4-carboxylate) crystallizes in the monoclinic C2/c space group, and the cobalt(II) ion possesses a pseudo-octahedral environment given by the two mer-coordinated tridentate ligands. Direct-current magnetic data, single-crystal torque magnetometry, and EPR measurements disclosed the easy-axis nature of this cobalt(II) complex, which shows single-molecule magnet behavior when a static field is applied in alternating-current susceptibility measurements. Diamagnetic dilution in the zinc(II) analogue [Zn(bpp-COOMe)2 ](ClO4 )2 (2) afforded the derivative [Zn0.95 Co0.05 (bpp-COOMe)2 ](ClO4 )2 (3), which exhibits slow relaxation of magnetization even in zero field thanks to the reduction of dipolar interactions. Theoretical calculations confirmed the overall electronic structure and the magnetic scenario of the compound as drawn by experimental data, thus confirming the spin-phonon Raman relaxation mechanism, and a direct quantum tunneling in the ground state as the most plausible relaxation pathway in zero field.
Collapse
Affiliation(s)
- Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, and INSTM RU of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Nathalie Bridonneau
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, and INSTM RU of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy.,Current address: Laboratoire Interfaces Traitements Organisation, et Dynamique des Systèmes (ITODYS), UMR 7086 CNRS, Université Paris 7 Diderot, Paris Bât. Lavoisier, 15 rue Jean-Antoine de Baïf, 75205, Paris Cedex 13, France
| | - Giordano Poneti
- Laboratory of Molecular Magnetism (LAMM), Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, and INSTM RU of Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy.,Current address: Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Lorenzo Tesi
- Laboratory of Molecular Magnetism (LAMM), Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, and INSTM RU of Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Lorenzo Sorace
- Laboratory of Molecular Magnetism (LAMM), Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, and INSTM RU of Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Jesus Jover
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Roberta Sessoli
- Laboratory of Molecular Magnetism (LAMM), Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, and INSTM RU of Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Andrea Cornia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, and INSTM RU of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| |
Collapse
|
30
|
Switlicka A, Machura B, Kruszynski R, Cano J, Toma LM, Lloret F, Julve M. The influence of pseudohalide ligands on the SIM behaviour of four-coordinate benzylimidazole-containing cobalt(ii) complexes. Dalton Trans 2018; 47:5831-5842. [PMID: 29648565 DOI: 10.1039/c7dt04735e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three, mononuclear complexes of the formula [Co(bmim)2(SCN)2] (1), [Co(bmim)2(NCO)2] (2) and [Co(bmim)2(N3)2] (3) [bmim = 1-benzyl-2-methylimidazole] were prepared and structurally analyzed by single-crystal X-ray crystallography. The cobalt(ii) ions in 1-3 are tetrahedrally coordinated with two bmim molecules and two pseudohalide anions. The angular distortion parameter δ was calculated and the SHAPE program (based on the CShM concept) was used for 1-3 to estimate the angular distortion from an ideal tetrahedron. The molecules of 1-3 are effectively separated, and the values of the shortest distance of cobalt-cobalt are 8.442(6) and 6.774(8) Å for 1, 10.349(8) and 10.716(8) Å for 2 and 6.778(1) and 9.232(1) Å for 3. Direct current (dc) magnetic susceptibility measurements on the crushed crystals of 1-3 were carried out in the temperature range 1.9-295 K. The variable-temperature magnetic data of 1-3 mainly obey the zero-field splitting effect (D) of the 4A2 ground term of the tetrahedral cobalt(ii) complexes (2D being the energy gap between the |±1/2 and |±3/2 levels of the spin). The analysis of their magnetic data through the Hamiltonian H = D[S2z - S(S + 1)/3] + E(Sx2 - Sy2) + gβHS led to the following best-fit parameters: g = 2.29, D = -7.5 cm-1 and E/D = 0.106 (1), g = 2.28, D = + 6.3 cm-1 and E/D = 0.007 (2) and g = 2.36, D = + 6.7 cm-1 and E/D = 0.090 (3). The signs of D for 1-3 were confirmed by Q-band EPR spectra on powdered samples in the temperature range 4.0-20 K. Field-induced SIM behaviour was observed for 1-3 below 4.0 K, and the frequency-dependent maxima of χ''M were observed for 1 and only incipient signals of χ''M occurred for 2 and 3. The values of the exponential factor (τ0) and activation energy (Ea) for 1-3 which were obtained from the Arrhenius plot suggest a single relaxation process characteristic of an Orbach mechanism.
Collapse
Affiliation(s)
- A Switlicka
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland.
| | | | | | | | | | | | | |
Collapse
|
31
|
Feng M, Tong ML. Single Ion Magnets from 3d to 5f: Developments and Strategies. Chemistry 2018; 24:7574-7594. [PMID: 29385282 DOI: 10.1002/chem.201705761] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 12/21/2022]
Abstract
Single-ion magnets (SIMs), exhibiting slow magnetization relaxation in the absence of the magnetic field, originate from their single spin-carrier centre. In pursuit of high-performance magnetic properties, such as high spin-reversal barrier and high blocking temperature, various metal centres were investigated to establish SIMs, including 3d and 5d transition metal ions, 4f lanthanide ions, and 5f actinide ions, which possess unique zero-field splitting and magnetic properties. Therefore, proper ligand field is of great importance to different types of metals. In the given great breakthroughs since the first SIM, [Pc2 Tb]- (Pc=dianion of phthalocyanine), was reported, strategies of ligand field design have emerged. In this review, the developments of SIMs with different metal centres are summarized, as well as the possible strategies.
Collapse
Affiliation(s)
- Min Feng
- Key Laboratory of Bioinorganic and Synthetic Chemistry, of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry, of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
32
|
Yamane T, Sugisaki K, Matsuoka H, Sato K, Toyota K, Shiomi D, Takui T. ESR analyses of picket fence MnII and 6th ligand coordinated FeIII porphyrins (S = 5/2) and a CoII(hfac) complex (S = 3/2) with sizable ZFS parameters revisited: a full spin Hamiltonian approach and quantum chemical calculations. Dalton Trans 2018; 47:16429-16444. [DOI: 10.1039/c8dt02988a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conventional X-band ESR spectra are fully reanalyzed by a full spin Hamiltonian approach.
Collapse
Affiliation(s)
- Takeshi Yamane
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Kenji Sugisaki
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Hideto Matsuoka
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Kazuo Toyota
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Daisuke Shiomi
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| |
Collapse
|
33
|
|
34
|
Casanova I, Durán ML, Viqueira J, Sousa-Pedrares A, Zani F, Real JA, García-Vázquez JA. Metal complexes of a novel heterocyclic benzimidazole ligand formed by rearrangement-cyclization of the corresponding Schiff base. Electrosynthesis, structural characterization and antimicrobial activity. Dalton Trans 2018; 47:4325-4340. [DOI: 10.1039/c8dt00532j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot electrochemical synthesis of metal complexes containing a novel heterocyclic benzimidazole ligand is reported and characterized.
Collapse
Affiliation(s)
- I. Casanova
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - M. L. Durán
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - J. Viqueira
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - A. Sousa-Pedrares
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - F. Zani
- Departamento di Farmacia
- Parco Area delle Scienze
- 43124 Parma
- Italy
| | - J. A. Real
- Institut de Ciencia Molecular Departament de Química Inorgánica
- Universitat de Valencia
- Valencia
- Spain
| | - J. A. García-Vázquez
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| |
Collapse
|
35
|
Chen Z, Yin L, Mi X, Wang S, Cao F, Wang Z, Li Y, Lu J, Dou J. Field-induced slow magnetic relaxation of two 1-D compounds containing six-coordinated cobalt(ii) ions: influence of the coordination geometry. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00388b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two 1-D Co(ii) compounds with different coordination geometries of the same coordination sphere exhibited field-induced slow relaxation magnetization with different D values.
Collapse
Affiliation(s)
- Zhiwei Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| | - Lei Yin
- Wuhan National High Magnetic Field Center & School of Physics
- Huazhong University of Science and Technology
- Wuhan
- P.R. China
| | - Xiuna Mi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| | - Fan Cao
- Qingdao University of Science & Technology
- College of Chemistry and Molecular Engineering
- Qingdao
- P. R. China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics
- Huazhong University of Science and Technology
- Wuhan
- P.R. China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| |
Collapse
|
36
|
Chen SY, Cui HH, Zhang YQ, Wang Z, Ouyang ZW, Chen L, Chen XT, Yan H, Xue ZL. Magnetic anisotropy and relaxation behavior of six-coordinate tris(pivalato)-Co(ii) and -Ni(ii) complexes. Dalton Trans 2018; 47:10162-10171. [DOI: 10.1039/c8dt01554f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic measurements, HFEPR and theoretical calculations have been used to study the magnetic anisotropy of the six-coordinate field-induced single ion magnet (NBu4)[Co(piv)3] and its Ni analogue.
Collapse
Affiliation(s)
- Shu-Yang Chen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Hui-Hui Cui
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Lei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Zi-Ling Xue
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| |
Collapse
|
37
|
Liu X, Ma X, Cen P, An F, Wang Z, Song W, Zhang YQ. One-dimensional cobalt(ii) coordination polymer featuring single-ion-magnet-type field-induced slow magnetic relaxation. NEW J CHEM 2018. [DOI: 10.1039/c8nj01236a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-ion-magnet-type field-induced double magnetic relaxation was observed in a one-dimensional cobalt(ii) coordination polymer which shows easy-axis anisotropy with D = −33.9 cm−1 and an energy barrier of Ueff = 38.8 K.
Collapse
Affiliation(s)
- Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Xiufang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Peipei Cen
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Fengqing An
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Weiming Song
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| |
Collapse
|
38
|
Nemec I, Herchel R, Trávníček Z. Two polymorphic Co(ii) field-induced single-ion magnets with enormous angular distortion from the ideal octahedron. Dalton Trans 2018; 47:1614-1623. [DOI: 10.1039/c7dt03992a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A mononuclear complex [Co(neo)(PhCOO)2] was prepared in two polymorphic forms, which both possess large magnetic anisotropy with different degrees of rhombicity. Furthermore, both polymorphs behave as field-induced single-ion magnets.
Collapse
Affiliation(s)
- I. Nemec
- Regional Centre of Advanced Technologies and Materials
- Department of Inorganic Chemistry
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| | - R. Herchel
- Regional Centre of Advanced Technologies and Materials
- Department of Inorganic Chemistry
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| | - Z. Trávníček
- Regional Centre of Advanced Technologies and Materials
- Department of Inorganic Chemistry
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| |
Collapse
|
39
|
Wei HW, Yang QF, Lai XY, Wang XZ, Yang TL, Hou Q, Liu XY. Field-induced slow relaxation of magnetization in a distorted octahedral mononuclear high-spin Co(ii) complex. CrystEngComm 2018. [DOI: 10.1039/c7ce01981e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By adopting the strategy of mixed rigid ligands, two novel mononuclear complexes with distorted octahedral geometries are obtained. SIM-type slow magnetic relaxation behavior is observed in Co(ii)-based complexes.
Collapse
Affiliation(s)
- Hai-Wen Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- China
- College of Chemistry and Chemical Engineering
| | - Qing-Feng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- China
- College of Chemistry and Chemical Engineering
| | - Xiao-Yong Lai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- China
- College of Chemistry and Chemical Engineering
| | - Xiao-Zhong Wang
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Tian-Lin Yang
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Qin Hou
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- China
| | - Xiang-Yu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- China
- College of Chemistry and Chemical Engineering
| |
Collapse
|
40
|
Stetsiuk O, El-Ghayoury A, Lloret F, Julve M, Avarvari N. Mononuclear and One-Dimensional Cobalt(II) Complexes with the 3,6-Bis(picolylamino)-1,2,4,5-tetrazine Ligand. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Oleh Stetsiuk
- Laboratoire MOLTECH-Anjou, UMR 6200; CNRS Université d'Angers, UFR Sciences, Bât. K; 2 Bd. Lavoisier 49045 Angers France
- Department of Inorganic Chemistry; Taras Shevchenko National University of Kyiv; Volodymyrska str. 64/13 01601 Kyiv Ukraine
| | - Abdelkrim El-Ghayoury
- Laboratoire MOLTECH-Anjou, UMR 6200; CNRS Université d'Angers, UFR Sciences, Bât. K; 2 Bd. Lavoisier 49045 Angers France
| | - Francesc Lloret
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica; Universitat de València; C/Catedrático José Beltrán 2 46980 Paterna (Valencia) Spain
| | - Miguel Julve
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica; Universitat de València; C/Catedrático José Beltrán 2 46980 Paterna (Valencia) Spain
| | - Narcis Avarvari
- Laboratoire MOLTECH-Anjou, UMR 6200; CNRS Université d'Angers, UFR Sciences, Bât. K; 2 Bd. Lavoisier 49045 Angers France
| |
Collapse
|
41
|
Field-Induced Single-Ion Magnet Behaviour in Two New Cobalt(II) Coordination Polymers with 2,4,6-Tris(4-pyridyl)-1,3,5-triazine. INORGANICS 2017. [DOI: 10.3390/inorganics5040090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Cucos P, Sorace L, Maxim C, Shova S, Patroi D, Caneschi A, Andruh M. Cobalt(II) Ions Connecting [Co II4] Helicates into a 2-D Coordination Polymer Showing Slow Relaxation of the Magnetization. Inorg Chem 2017; 56:11668-11675. [PMID: 28915022 DOI: 10.1021/acs.inorgchem.7b01640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reactions of cobalt(II) perchlorate with a diazine tetratopic helicand, H4L, in the presence of sodium carbonate afford two coordination polymers constructed from tetranuclear anionic helicates as building blocks: ∞3[Co4L3Na4(H2O)4]·4H2O (1) and ∞2[Co5L3Na2(H2O)9]·2.7H2O·DMF (2). The tetranuclear triple-stranded helicates, {CoII4L3}4-, are connected in 1 by sodium(I) ions and in 2 by sodium(I) and cobalt(II) ions (H4L results from the condensation reaction between 3-formylsalicylic acid and hydrazine). The crystal structures of the two compounds have been solved. In both compounds the anionic helicates interact with the assembling cations through the carboxylato oxygen atoms. Compound 2 features chains resulting from connecting the tetranuclear helicates through cobalt(II) ions. The analysis of the magnetic properties of compounds 1 and 2 evidenced a dominant antiferromagnetic coupling for 1, resulting in a diamagnetic ground state. In contrast, the magnetic behavior of 2 is dominated at low temperature by the CoII ion which connects the antiferromagnetically coupled {CoII4} helical moieties. The ac magnetic measurements for 2 reveal the occurrence of slow relaxation of the magnetization that is due to the single, uncorrelated cobalt(II) ions, which are diluted in an essentially diamagnetic matrix of {CoII4} moieties (ΔEeff = 26.7 ± 0.3 cm-1 with τ0 = (2.3 ± 0.2) × 10-6 s).
Collapse
Affiliation(s)
- Paula Cucos
- Ilie Murgulescu-Institute of Physical Chemistry of the Romanian Academy , Splaiul Independentei no. 202, 060021 Bucharest, Romania
| | - Lorenzo Sorace
- Department of Chemistry "U. Schiff" and INSTM RU, University of Florence , Via della Lastruccia 3, 50019 Florence, Italy
| | - Catalin Maxim
- University of Bucharest , Faculty of Chemistry, Inorganic Chemistry Laboratory, Str. Dumbrava Rosie no. 23, 020464 Bucharest, Romania
| | - Sergiu Shova
- Petru Poni, Institute of Macromolecular Chemistry , Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania
| | - Delia Patroi
- National Institute for R&D in Electrical Engineering INCDIE ICPE-CA , Splaiul Unirii no. 313, 030138 Bucharest, Romania
| | - Andrea Caneschi
- Department of Chemistry "U. Schiff" and INSTM RU, University of Florence , Via della Lastruccia 3, 50019 Florence, Italy
| | - Marius Andruh
- University of Bucharest , Faculty of Chemistry, Inorganic Chemistry Laboratory, Str. Dumbrava Rosie no. 23, 020464 Bucharest, Romania
| |
Collapse
|
43
|
Shao D, Deng L, Shi L, Wu D, Wei X, Yang S, Wang X. Slow Magnetic Relaxation and Spin‐Crossover Behavior in a Bicomponent Ion‐Pair Cobalt(II) Complex. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dong Shao
- School of Chemistry and Chemical Engineering State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Nanjing University 210023 Nanjing P. R. China
| | - Lin‐Dan Deng
- School of Chemistry and Chemical Engineering State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Nanjing University 210023 Nanjing P. R. China
| | - Le Shi
- School of Chemistry and Chemical Engineering State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Nanjing University 210023 Nanjing P. R. China
| | - Dong‐Qing Wu
- School of Chemistry and Chemical Engineering State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Nanjing University 210023 Nanjing P. R. China
| | - Xiao‐Qin Wei
- School of Chemistry and Chemical Engineering State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Nanjing University 210023 Nanjing P. R. China
| | - Si‐Run Yang
- School of Chemistry and Chemical Engineering State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Nanjing University 210023 Nanjing P. R. China
| | - Xin‐Yi Wang
- School of Chemistry and Chemical Engineering State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Nanjing University 210023 Nanjing P. R. China
| |
Collapse
|
44
|
Palacios MA, Nehrkorn J, Suturina EA, Ruiz E, Gómez‐Coca S, Holldack K, Schnegg A, Krzystek J, Moreno JM, Colacio E. Analysis of Magnetic Anisotropy and the Role of Magnetic Dilution in Triggering Single‐Molecule Magnet (SMM) Behavior in a Family of Co
II
Y
III
Dinuclear Complexes with Easy‐Plane Anisotropy. Chemistry 2017; 23:11649-11661. [DOI: 10.1002/chem.201702099] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 11/10/2022]
Affiliation(s)
- María A. Palacios
- Departamento de Química Inorgánica Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Joscha Nehrkorn
- Department of Chemistry University of Washington Box 351700 Seattle WA 98195 USA
- Berlin Joint EPR Lab Institute for Nanospectroscopy Helmholtz-Zentrum Berlin für Materialien und Energie Kekuléstrassee 5 12489 Berlin Germany
| | | | - Eliseo Ruiz
- Departament de Química Inorgànica and Institut de Recerca de Química Teòrica i Computacional Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Silvia Gómez‐Coca
- Departament de Química Inorgànica and Institut de Recerca de Química Teòrica i Computacional Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Karsten Holldack
- Berlin Joint EPR Lab Institute for Nanospectroscopy Helmholtz-Zentrum Berlin für Materialien und Energie Kekuléstrassee 5 12489 Berlin Germany
| | - Alexander Schnegg
- Berlin Joint EPR Lab Institute for Nanospectroscopy Helmholtz-Zentrum Berlin für Materialien und Energie Kekuléstrassee 5 12489 Berlin Germany
| | - Jurek Krzystek
- National High Magnetic Field Laboratory Florida State University Tallahassee FL 32310 USA
| | - José M. Moreno
- Departamento de Química Inorgánica Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Enrique Colacio
- Departamento de Química Inorgánica Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| |
Collapse
|
45
|
Palion-Gazda J, Machura B, Kruszynski R, Grancha T, Moliner N, Lloret F, Julve M. Spin Crossover in Double Salts Containing Six- and Four-Coordinate Cobalt(II) Ions. Inorg Chem 2017; 56:6281-6296. [DOI: 10.1021/acs.inorgchem.7b00360] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joanna Palion-Gazda
- Department of Crystallography, Institute of Chemistry, University of Silesia, Ninth Szkolna Street, 40006 Katowice, Poland
| | - Barbara Machura
- Department of Crystallography, Institute of Chemistry, University of Silesia, Ninth Szkolna Street, 40006 Katowice, Poland
| | - Rafal Kruszynski
- Department of X-ray Crystallography and Crystal Chemistry, Institute
of General and Ecological Chemistry, Lodz University of Technology, 116 Żeromski Street, 90-924 Łódź, Poland
| | - Thais Grancha
- Departament de Química Inorgànica/Instituto de Ciencia
Molecular (ICMol), Universitat de València, C/Catedrático José
Beltrán 2, 46980 Paterna, València, Spain
| | - Nicolás Moliner
- Departament de Química Inorgànica/Instituto de Ciencia
Molecular (ICMol), Universitat de València, C/Catedrático José
Beltrán 2, 46980 Paterna, València, Spain
| | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia
Molecular (ICMol), Universitat de València, C/Catedrático José
Beltrán 2, 46980 Paterna, València, Spain
| | - Miguel Julve
- Departament de Química Inorgànica/Instituto de Ciencia
Molecular (ICMol), Universitat de València, C/Catedrático José
Beltrán 2, 46980 Paterna, València, Spain
| |
Collapse
|
46
|
Mai HD, Kang P, Kim JK, Yoo H. A Cobalt Supramolecular Triple-Stranded Helicate-based Discrete Molecular Cage. Sci Rep 2017; 7:43448. [PMID: 28262690 PMCID: PMC5337952 DOI: 10.1038/srep43448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/23/2017] [Indexed: 12/19/2022] Open
Abstract
We report a strategy to achieve a discrete cage molecule featuring a high level of structural hierarchy through a multiple-assembly process. A cobalt (Co) supramolecular triple-stranded helicate (Co-TSH)-based discrete molecular cage (1) is successfully synthesized and fully characterized. The solid-state structure of 1 shows that it is composed of six triple-stranded helicates interconnected by four linking cobalt species. This is an unusual example of a highly symmetric cage architecture resulting from the coordination-driven assembly of metallosupramolecular modules. The molecular cage 1 shows much higher CO2 uptake properties and selectivity compared with the separate supramolecular modules (Co-TSH, complex 2) and other molecular platforms.
Collapse
Affiliation(s)
- Hien Duy Mai
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Philjae Kang
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jin Kyung Kim
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Hyojong Yoo
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| |
Collapse
|
47
|
Shao D, Shi L, Shen FX, Wang XY. A cyano-bridged coordination nanotube showing field-induced slow magnetic relaxation. CrystEngComm 2017. [DOI: 10.1039/c7ce01436h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Field-induced slow magnetic relaxation was observed in a cyano-bridged nanotube constructed from a pentagonal bipyramidal CoII unit and a hexacyanocobaltate(iii) anion.
Collapse
Affiliation(s)
- Dong Shao
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Le Shi
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Fu-Xing Shen
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
48
|
Ma R, Chen Z, Cao F, Wang S, Huang X, Li Y, Lu J, Li D, Dou J. Two 2-D multifunctional cobalt(ii) compounds: field-induced single-ion magnetism and catalytic oxidation of benzylic C–H bonds. Dalton Trans 2017; 46:2137-2145. [DOI: 10.1039/c6dt04551k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two 2-D multifunctional cobalt(ii) compounds were reported with both field-induced single-ion magnetism and catalytic oxidation of benzylic C–H bonds.
Collapse
Affiliation(s)
- Ranran Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Zhiwei Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Fan Cao
- Qingdao University of Science & Technology
- College of Chemistry and Molecular Engineering
- P. R. China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Dacheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| |
Collapse
|
49
|
Shao D, Zhou Y, Pi Q, Shen FX, Yang SR, Zhang SL, Wang XY. Two-dimensional frameworks formed by pentagonal bipyramidal cobalt(ii) ions and hexacyanometallates: antiferromagnetic ordering, metamagnetism and slow magnetic relaxation. Dalton Trans 2017; 46:9088-9096. [DOI: 10.1039/c7dt01893b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two-dimensional frameworks constructed by pentagonal bipyramidal CoII and [M(CN)6]3− units have been synthesized and characterized structurally and magnetically.
Collapse
Affiliation(s)
- Dong Shao
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Yan Zhou
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Qian Pi
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Fu-Xing Shen
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Si-Run Yang
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Shao-Liang Zhang
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
50
|
Korchagin DV, Palii AV, Yureva EA, Akimov AV, Misochko EY, Shilov GV, Talantsev AD, Morgunov RB, Shakin AA, Aldoshin SM, Tsukerblat BS. Evidence of field induced slow magnetic relaxation in cis-[Co(hfac)2(H2O)2] exhibiting tri-axial anisotropy with a negative axial component. Dalton Trans 2017; 46:7540-7548. [DOI: 10.1039/c7dt01236e] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We report a combined experimental characterization and theoretical modeling of the hexa-coordinated high-spin Co(ii) complex cis-[Co(hfac)2(H2O)2] (I).
Collapse
Affiliation(s)
| | - Andrew V. Palii
- Institute of Problems of Chemical Physics
- Chernogolovka
- Russia
- Institute of Applied Physics
- Academy of Sciences of Moldova
| | - Elena A. Yureva
- Institute of Problems of Chemical Physics
- Chernogolovka
- Russia
| | | | | | | | | | | | | | | | - Boris S. Tsukerblat
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beer-Sheva 84105
- Israel
| |
Collapse
|