1
|
Wang Q, Wu Q, Guo J, Yang X, Fang M, Wang J, Tai M, Cheng Y, Jin D, Wang L. Synthesis and Characterizations of Novel bi-ligand TbEu(cpioa)phen Phosphors with High Quantum Efficiency for WLED Applications. J Fluoresc 2024:10.1007/s10895-024-03927-y. [PMID: 39320630 DOI: 10.1007/s10895-024-03927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
The hydrothermal method was employed to synthesize a novel bi-ligands LnMOF: Ln(cpioa)phen. The secondary ligand 1, 10-phen serves as a bridging agent to further facilitate energy transfer between Ln ions and the primary ligand H3cpioa. A comparison between Ln(cpioa) MOFs (Ln: Tb3+, Eu3+) and Ln(cpioa)phen MOFs (Ln: Tb3+, Eu3+) reveals that addition of the secondary ligand significantly improves the emission intensity by as high as almost 34 times. After detailed structural study, it is found that different Ln ions have the similar coordination in the Ln(cpioa)phen MOF. In addition, the chromaticity of Ln(cpioa)phen MOFs can be easily tuned by the amounts of doping Ln ions. La0.974Tb0.0255Eu0.0005(cpioa)phen MOF has a white emission with a CIE coordinate of (0.323, 0.343). Characterizations of corresponding LED devices show that device based on Ln(cpioa)phen MOF has better photoluminescence performances, which indicates that Ln(cpioa)phen MOF has great potential of for WLED applications.
Collapse
Affiliation(s)
- Qianwei Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Qi Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Jinhu Guo
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Xinyu Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Mengxuan Fang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Jiaoying Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Minghui Tai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Yichong Cheng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Dalai Jin
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Longcheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China.
| |
Collapse
|
2
|
Gitlina AY, Khistiaeva V, Melnikov A, Ivonina M, Sizov V, Spiridonova D, Makarova A, Vyalikh D, Grachova E. Organometallic Ir(III) complexes: post-synthetic modification, photophysical properties and binuclear complex construction. Dalton Trans 2023. [PMID: 37334469 DOI: 10.1039/d3dt00901g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Two methods of post-synthetic modification (Suzuki coupling and CuAAC click-reaction) were applied to Ir(III) complexes [Ir(C^N)2N^N]+ to provide the second highly selective donor site. One family of functionalized complexes was used to demonstrate the potential of post-synthetic modification for controlled construction of d-d and d-f binuclear complexes. The complexes obtained were characterized by CHN elemental analysis, NMR spectroscopy, ESI mass-spectrometry, FTIR spectroscopy and single crystal X-ray diffraction analysis. By means of XPS and NEXAFS spectroscopy the coordination of diimine donor site to the Ln(III) centre has been definitely confirmed. The photophysical properties of mono- and binuclear complexes were carefully investigated, and the evolution of luminescent characteristics during the formation of a system of connected metallocenters is also discussed. TDDFT calculations were used to describe the luminescence mechanism and to confirm the conclusions made on the basis of experimental data.
Collapse
Affiliation(s)
- Anastasia Yu Gitlina
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Viktoria Khistiaeva
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Alexey Melnikov
- Centre for Nano- and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Mariia Ivonina
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Vladimir Sizov
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Dar'ya Spiridonova
- Centre for X-ray Diffraction Studies, St Petersburg University, 199034 St. Petersburg, Russia
| | - Anna Makarova
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Denis Vyalikh
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Elena Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| |
Collapse
|
3
|
Dallerba E, Hartnell D, Hackett MJ, Massi M, Lowe AB. Well‐defined Tetrazole‐functional Copolymers as Macromolecular Ligands for Luminescent Ir(III) and Re(I) Metal Species: Synthesis, Photophysical Properties and Application in Bioimaging. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elena Dallerba
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
| | - David Hartnell
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
- Curtin Health Innovation Research Institute (CHIRI) Curtin University Bentley Perth WA 6102 Australia
| | - Mark J. Hackett
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
- Curtin Health Innovation Research Institute (CHIRI) Curtin University Bentley Perth WA 6102 Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
| | - Andrew B. Lowe
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
| |
Collapse
|
4
|
Merillas B, Cuéllar E, Diez-Varga A, Torroba T, García-Herbosa G, Fernández S, Lloret-Fillol J, Martín-Alvarez JM, Miguel D, Villafañe F. Luminescent Rhenium(I)tricarbonyl Complexes Containing Different Pyrazoles and Their Successive Deprotonation Products: CO 2 Reduction Electrocatalysts. Inorg Chem 2020; 59:11152-11165. [PMID: 32705866 DOI: 10.1021/acs.inorgchem.0c01654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cationic fac-[Re(CO)3(pz*H)(pypzH)]OTf (pz*H = pyrazole, pzH; 3,5-dimethylpyrazole, dmpzH; indazole, indzH; 3-(2-pyridyl)pyrazole, pypzH) were obtained from fac-[ReBr(CO)3(pypzH)] by halide abstraction with AgOTf and subsequent addition of the corresponding pyrazole. Successive deprotonation with Na2CO3 and NaOH gave neutral fac-[Re(CO)3(pz*H)(pypz)] and anionic Na{fac-[Re(CO)3(pz*)(pypz)]} complexes, respectively. Cationic fac-[Re(CO)3(pz*H)(pypzH)]OTf, neutral complexes fac-[Re(CO)3(pz*H)(pypz)], and fac-[Re(CO)3(pypz)2Na] were subjected to photophysical and electrochemical studies. They exhibit phosphorescent decays from a prevalently 3MLCT excited state with quantum yields (Φ) in the range between 0.03 and 0.58 and long lifetimes (τ from 220 to 869 ns). The electrochemical behavior in Ar atmosphere of cationic and neutral complexes indicates that the oxidation processes assigned to ReI → ReII occurs at lower potentials for the neutral complex compared to cationic complex. The reduction processes occur at the ligands and do not depend on the charge of the complexes. The electrochemical behavior in CO2 saturated media is consistent with CO2 electrocatalyzed reduction, where the values of the catalytic activity [icat(CO2)/icat(Ar)] ranged from 2.7 to 11.5 (compared to 8.1 for fac-[Re(CO)3Cl(bipy)] studied as a reference). Controlled potential electrolysis for the pyrazole cationic (3a) and neutral (4a) complexes after 1 h affords CO in faraday yields of 61 and 89%, respectively. These values are higher for indazole complexes and may be related to the acidity of the coordinated pyrazole.
Collapse
Affiliation(s)
- Beatriz Merillas
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Elena Cuéllar
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Alberto Diez-Varga
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Tomás Torroba
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Gabriel García-Herbosa
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Sergio Fernández
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010 Barcelona, Spain
| | - Jose M Martín-Alvarez
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Daniel Miguel
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Fernando Villafañe
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
5
|
Mark-Lee WF, Chong YY, Kassim MB. Supramolecular structures of rhenium(I) complexes mediated by ligand planarity via the interplay of substituents. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:997-1006. [PMID: 30191891 DOI: 10.1107/s2053229618010586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/23/2018] [Indexed: 02/01/2023]
Abstract
The crystal and molecular structures of two ReI tricarbonyl complexes, namely fac-tricarbonylchlorido[1-(4-fluorocinnamoyl)-3-(pyridin-2-yl-κN)pyrazole-κN2]rhenium(I), [ReCl(C17H12FN3O)(CO)3], (I), and fac-tricarbonylchlorido[1-(4-nitrocinnamoyl)-3-(pyridin-2-yl-κN)pyrazole-κN2]rhenium(I) acetone monosolvate, [ReCl(C17H12ClN4O3)(CO)3]·C3H6O, (II), are reported. The complexes form centrosymmetric dimers that are linked into one-dimensional columns by C-H...Cl and N-O...H interactions in (I) and (II), respectively. C-H...Cl interactions in (II) generate two R21(7) loops that merge into a single R21(10) loop. These interactions involve the alkene, pyrazole and benzene rings, hence restricting the ligand rotation and giving rise to a planar conformation. Unlike (II), complex (I) exhibits a twisted conformation of the ligand and a pair of molecules forms a centrosymmetric dimer with an R22(10) loop via C-H...O interactions. The unique supramolecular structures of (I) and (II) are determined by their planarity and weak interactions. The planar conformation of (II) provides a base for appreciable π-π stacking interactions compared to (I). In addition, an N-O...π interaction stabilizes the supramolecular structure of (II). We report herein the first n→π* interactions of ReI tricarbonyl complexes, which account for 0.33 kJ mol-1. Intermolecular C-H...Cl and C-H...O interactions are present in both complexes, with (II) showing a greater preference for these interactions compared to (I), with cumulative contributions of 48.7 and 41.5%, respectively. The influence of inductive (fluoro) and/or resonance (nitro) effects on the π-stacking ability was further supported by LOLIPOP (localized orbital locator-integrated π over plane) analysis. The benzene ring of (II) demonstrated a higher π-stacking ability compared to that of (I), which is supported by the intrinsic planar geometry. The HOMA (harmonic oscillator model of aromaticity) index of (I) revealed more aromaticity with respect to (II), suggesting that NO2 greatly perturbed the aromaticity. The Hirshfeld fingerprint (FP) plots revealed the preference of (II) over (I) for π-π contacts, with contributions of 6.8 and 4.4%, respectively.
Collapse
Affiliation(s)
- Wun Fui Mark-Lee
- School of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Yan Yi Chong
- School of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohammad B Kassim
- School of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
6
|
Zubaidi ZN, Metherell AJ, Baggaley E, Ward MD. Ir(III) and Ir(III)/Re(I) complexes of a new bis(pyrazolyl-pyridine) bridging ligand containing a naphthalene-2,7-diyl spacer: Structural and photophysical properties. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Kisel KS, Melnikov AS, Grachova EV, Hirva P, Tunik SP, Koshevoy IO. Linking Re I and Pt II Chromophores with Aminopyridines: A Simple Route to Achieve a Complicated Photophysical Behavior. Chemistry 2017. [PMID: 28636113 DOI: 10.1002/chem.201701539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bifunctional aminopyridine ligands H2 N-(CH2 )n -4-C5 H4 N (n=0, L1; 1, L2; 2, L3) have been utilized for the preparation of the rhenium complexes [Re(phen)(CO)3 (L1-L3)]+ (1-3; phen=phenanthroline). Complexes 2 and 3 with NH2 -coordinated L2 and L3, respectively, were coupled with cycloplatinated motifs {Pt(ppy)Cl} and {Pt(dpyb)}+ (ppy=2-phenylpyridine, dpyb=dipyridylbenzene) to give the bimetallic species [Re(phen)(CO)3 (μ-L2/L3)Pt(ppy)Cl]+ (4, 6) and [Re(phen)(CO)3 (μ-L2/L3)Pt(dpyb)]2+ (5, 7). In solution, complexes 4 and 6 show 3 MLCT {Re}-based emission at 298 K, which changes to the 3 IL(ppy) state at 77 K. The photophysical properties of compounds 5 and 7 display a pronounced concentration dependence, presumably due to the formation of bimolecular aggregates. Analysis of the spectroscopic data, combined with TD-DFT simulations, suggest that unconventional heteroleptic {Re(phen)}⋅⋅⋅{Pt(dpyb)} π-π stacking operates as the driving force for ground-state association. The latter, together with intra- and intermolecular energy-transfer processes, determines the appearance of multiple emission bands and results in nonlinear relaxation kinetics of the excited states.
Collapse
Affiliation(s)
- Kristina S Kisel
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, Joensuu, Finland.,Institute of Chemistry, St.-Petersburg State University, 26 Universitetskiy pr., Petergof, St. Petersburg, Russia
| | - Alexei S Melnikov
- Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg, Russia
| | - Elena V Grachova
- Institute of Chemistry, St.-Petersburg State University, 26 Universitetskiy pr., Petergof, St. Petersburg, Russia
| | - Pipsa Hirva
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, Joensuu, Finland
| | - Sergey P Tunik
- Institute of Chemistry, St.-Petersburg State University, 26 Universitetskiy pr., Petergof, St. Petersburg, Russia
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, Joensuu, Finland
| |
Collapse
|
8
|
Frin KPM, de Almeida RM. Mono- and di-nuclear Re(i) complexes and the role of protonable nitrogen atoms in quenching emission by hydroquinone. Photochem Photobiol Sci 2017; 16:1230-1237. [DOI: 10.1039/c7pp00092h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the simplest type of supramolecular architecture as an easy approach to understand the quenching mechanism of rhenium(i) compounds.
Collapse
|