1
|
Zhang L, Gao EQ. Catalytic C(sp)-H carboxylation with CO2. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Mu PF, Zhang L, Bu R, Xiong LF, Liu YW, Gao EQ. Guanidine-Based Covalent Organic Frameworks: Cooperation between Cores and Linkers for Chromic Sensing and Efficient CO 2 Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6902-6911. [PMID: 36694474 DOI: 10.1021/acsami.2c20510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
C(sp)-H carboxylation with CO2 is an attractive route of CO2 utilization and is traditionally promoted by transition metal catalysts, and organocatalysis for the conversion remains rarely explored and challenging. In this article, triaminoguanidine-derived covalent organic frameworks (COFs) were used as platforms to develop heterogeneous organocatalysts for the reaction. We demonstrated that the COFs with guanidine cores and pyrazine linkers show high catalytic performance as a result of the cooperation between cores and linkers. The core is vitally important, which is deprotonated to the guanidinato group that binds and activates CO2. The pyrazine linker collaborates with the core to activate the C(sp)-H bond through hydrogen bonding. In addition, the COFs show acid- and base-responsive chromic behaviors thanks to the amphoteric nature of the core and the auxochromic effect of the pyrazine linker. The work opens up new avenues to organocatalysts for C-H carboxylation and chromic materials for sensing and switching applications.
Collapse
Affiliation(s)
- Peng-Fei Mu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Li-Fei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ya-Wei Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
3
|
Heterogeneous catalytic materials for carboxylation reactions with CO2 as reactant. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Li JR, Chen C, Liu XB, Hu YL. Novel and sustainable carboxylation of terminal alkynes and CO 2 to alkynyl carboxylic acids using triazolium ionic liquid-modified PMO-supported transition metal acetylacetonate as effective cooperative catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83247-83261. [PMID: 35761139 DOI: 10.1007/s11356-022-21630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Efficient and sustainable chemical fixation of CO2 into value-added chemicals is one of the most promising objectives in environmental chemistry. In this work, transition metal acetylacetonate immobilized onto triazolium ionic liquid-modified periodic mesoporous organosilica PMO-IL-M(x) was successfully prepared and investigated as an effective and heterogeneous catalyst in the direct carboxylation of terminal alkynes and CO2 to the desired alkynyl carboxylic acids. It was found that the catalyst PMO-IL-Sn(0.3) exhibited extraordinary catalytic performance in terms of excellent activity, stability, productivity, and excellent yields under mild reaction conditions. Moreover, the catalyst PMO-IL-Sn(0.3) could be easily recovered and reused at least six times without considerable loss in catalytic activity. This work provides a sustainable and efficient synergistic strategy for the chemical fixation of carbon dioxide into valuable alkynyl carboxylic acids.
Collapse
Affiliation(s)
- Jing-Rui Li
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, People's Republic of China
| | - Chen Chen
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Xiao-Bing Liu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, 343009, People's Republic of China
| | - Yu-Lin Hu
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, People's Republic of China.
| |
Collapse
|
5
|
Chen P, Xiong T, Liang Y, Pan Y. Recent progress on N‐heterocyclic carbene catalysts in chemical fixation of CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peibo Chen
- Guilin University of Electronic Technology School of Life and Environmental Sciences CHINA
| | - Tingkai Xiong
- Guilin University of Electronic Technology School of Life and Environmental Sciences CHINA
| | - Ying Liang
- Guilin University of Electronic Technology School of Life and Environmental Sciences Guilin, 541004, People’s Republic of China. 541004 Guilin CHINA
| | - Yingming Pan
- Guangxi Normal University School of Chemistry and Molecular Engineering of Medicinal Resources CHINA
| |
Collapse
|
6
|
Chen F, Tao S, Liu N, Dai B. CNN-Type Binuclear Cu(I) Complexes Catalyzed Direct Carboxylation via the Fixation of CO 2 at Room Temperature. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Shi K, Lu C, Zhao B. Carboxylation of terminal alkynes with CO 2 catalyzed by imidazolium-bridged bis(phenolato) rare-earth metal complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03130b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An imidazolium-bridged bis(phenolato) yttrium complex shows excellent catalytic reactivity in the direct carboxylation of terminal alkynes and further one-pot three-component esterification.
Collapse
Affiliation(s)
- Kai Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. China
| | - Chengrong Lu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. China
| | - Bei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
8
|
Huang G, Fang Y, Ni S, Li M, Dang L. Theoretical Study on NHC−Ag(I)/Au(I) Catalyzed Mobius Versus Wagner‐Meerwein Rearrangements of 2‐Methyl‐N‐methoxyaniline. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guanglong Huang
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Guangdong 515063 P. R. China
| | - Yu‐Qi Fang
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Guangdong 515063 P. R. China
| | - Shao‐Fei Ni
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Guangdong 515063 P. R. China
| | - Ming‐De Li
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Guangdong 515063 P. R. China
| | - Li Dang
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Guangdong 515063 P. R. China
| |
Collapse
|
9
|
Wang Z, Tzouras NV, Nolan SP, Bi X. Silver N-heterocyclic carbenes: emerging powerful catalysts. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Goudou F, Gee AD, Bongarzone S. Carbon-11 carboxylation of terminal alkynes with [ 11 C]CO 2. J Labelled Comp Radiopharm 2021; 64:237-242. [PMID: 33665888 DOI: 10.1002/jlcr.3907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 11/12/2022]
Abstract
A copper-catalysed radiosynthesis of carbon-11 radiolabelled carboxylic acids was developed by reacting terminal alkynes and cyclotron-produced carbon-11 carbon dioxide ([11 C]CO2 ) in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). A small library of 11 C-labelled propiolic acid derivatives were obtained with a total synthesis time of 15 min from end of bombardment (EOB) with a (non-isolated) radiochemical yield ranging from 7% to 28%.
Collapse
Affiliation(s)
- Francesca Goudou
- Research and Development Department, SYNBIOLAB, Baie-Mahault, Guadeloupe
- Research and Development Department, PMB Head Office, Peynier, France
- School of Imaging Sciences & Biomedical Engineering, St Thomas' Hospital, King's College London, London, UK
| | - Antony D Gee
- School of Imaging Sciences & Biomedical Engineering, St Thomas' Hospital, King's College London, London, UK
| | - Salvatore Bongarzone
- School of Imaging Sciences & Biomedical Engineering, St Thomas' Hospital, King's College London, London, UK
| |
Collapse
|
11
|
An efficient and recyclable AgNO3/ionic liquid system catalyzed atmospheric CO2 utilization: Simultaneous synthesis of 2-oxazolidinones and α-hydroxyl ketones. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Hazra Chowdhury A, Hazra Chowdhury I, Islam SM. One-Pot Green Synthesis of AgNPs@RGO for Removal of Water Pollutant and Chemical Fixation of CO2 Under Mild Reaction Conditions. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01643-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Abstract
In this contribution, we provide a comprehensive overview of C-H activation methods promoted by NHC-transition metal complexes, covering the literature since 2002 (the year of the first report on metal-NHC-catalyzed C-H activation) through June 2019, focusing on both NHC ligands and C-H activation methods. This review covers C-H activation reactions catalyzed by group 8 to 11 NHC-metal complexes. Through discussing the role of NHC ligands in promoting challenging C-H activation methods, the reader is provided with an overview of this important area and its crucial role in forging carbon-carbon and carbon-heteroatom bonds by directly engaging ubiquitous C-H bonds.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Guangrong Meng
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry , Ghent University , Krijgslaan 281 , 9000 Ghent , Belgium
| | - Michal Szostak
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| |
Collapse
|
14
|
Toniolo D, Bobbink FD, Dyson PJ, Mazzanti M. Anhydrous Conditions Enable the Catalyst‐Free Carboxylation of Aromatic Alkynes with CO
2
under Mild Conditions. Helv Chim Acta 2020. [DOI: 10.1002/hlca.201900258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Davide Toniolo
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne
| | - Felix D. Bobbink
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne
| |
Collapse
|
15
|
Ganina OG, Bondarenko GN, Isaeva VI, Kustov LM, Beletskaya IP. Cu-MOF-Catalyzed Carboxylation of Alkynes and Epoxides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428019120017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Chakraborty D, Shekhar P, Singh HD, Kushwaha R, Vinod CP, Vaidhyanathan R. Ag Nanoparticles Supported on a Resorcinol‐Phenylenediamine‐Based Covalent Organic Framework for Chemical Fixation of CO
2. Chem Asian J 2019; 14:4767-4773. [DOI: 10.1002/asia.201901157] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/18/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Debanjan Chakraborty
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
- Centre for Energy SceinceIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Pragalbh Shekhar
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Himan Dev Singh
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Rinku Kushwaha
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - C. P. Vinod
- CSIR-NCL Catalysis and Inorganic Chemistry Division Pune Maharashtra- 411008 India
| | - Ramanathan Vaidhyanathan
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
- Centre for Energy SceinceIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| |
Collapse
|
18
|
Wang W, Jia L, Feng X, Fang D, Guo H, Bao M. Efficient Carboxylation of Terminal Alkynes with Carbon Dioxide Catalyzed by Ligand‐Free Copper Catalyst under Ambient Conditions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wan‐Hui Wang
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
- School of Petroleum and Chemical EngineeringDalian University of Technology Panjin 124221 China
| | - Lihong Jia
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
| | - Xiujuan Feng
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
| | - Dingqiao Fang
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
| | - Hongyu Guo
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
| | - Ming Bao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
- School of Petroleum and Chemical EngineeringDalian University of Technology Panjin 124221 China
| |
Collapse
|
19
|
Transition metal-free carboxylation of terminal alkynes with carbon dioxide through dual activation: Synthesis of propiolic acids. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Thirukovela NS, Balaboina R, Kankala S, Vadde R, Vasam CS. Activation of nitriles by silver(I) N-heterocyclic carbenes: An efficient on-water synthesis of primary amides. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Balaboina R, Thirukovela NS, Vadde R, Vasam CS. Amide bond synthesis via silver(I) N-heterocyclic carbene-catalyzed and tert-butyl hydroperoxide-mediated oxidative coupling of alcohols with amines under base free conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Gong Y, Yuan Y, Chen C, Zhang P, Wang J, Zhuiykov S, Chaemchuen S, Verpoort F. Core-shell metal-organic frameworks and metal functionalization to access highest efficiency in catalytic carboxylation. J Catal 2019. [DOI: 10.1016/j.jcat.2019.01.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Hong J, Li M, Zhang J, Sun B, Mo F. C-H Bond Carboxylation with Carbon Dioxide. CHEMSUSCHEM 2019; 12:6-39. [PMID: 30381905 DOI: 10.1002/cssc.201802012] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Carbon dioxide is a nontoxic, renewable, and abundant C1 source, whereas C-H bond functionalization represents one of the most important approaches to the construction of carbon-carbon bonds and carbon-heteroatom bonds in an atom- and step-economical manner. Combining the chemical transformation of CO2 with C-H bond functionalization is of great importance in the synthesis of carboxylic acids and their derivatives. The contents of this Review are organized according to the type of C-H bond involved in carboxylation. The primary types of C-H bonds are as follows: C(sp)-H bonds of terminal alkynes, C(sp2 )-H bonds of (hetero)arenes, vinylic C(sp2 )-H bonds, the ipso-C(sp2 )-H bonds of the diazo group, aldehyde C(sp2 )-H bonds, α-C(sp3 )-H bonds of the carbonyl group, γ-C(sp3 )-H bonds of the carbonyl group, C(sp3 )-H bonds adjacent to nitrogen atoms, C(sp3 )-H bonds of o-alkyl phenyl ketones, allylic C(sp3 )-H bonds, C(sp3 )-H bonds of methane, and C(sp3 )-H bonds of halogenated aliphatic hydrocarbons. In addition, multicomponent reactions, tandem reactions, and key theoretical studies related to the carboxylation of C-H bonds are briefly summarized. Transition-metal-free, organocatalytic, electrochemical, and light-driven methods are highlighted.
Collapse
Affiliation(s)
- Junting Hong
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Man Li
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Jianning Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Beiqi Sun
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| |
Collapse
|
24
|
Shah DJ, Sharma AS, Shah AP, Sharma VS, Athar M, Soni JY. Fixation of CO2 as a carboxylic acid precursor by microcrystalline cellulose (MCC) supported Ag NPs: a more efficient, sustainable, biodegradable and eco-friendly catalyst. NEW J CHEM 2019. [DOI: 10.1039/c8nj06373g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver nanoparticles supported on microcrystalline cellulose (Ag NPs@MCC), an active catalyst, has been discovered for the direct carbonylation of terminal alkynes with CO2 into carboxylic acid under mild and sustainable reaction conditions.
Collapse
Affiliation(s)
- Dharmesh J. Shah
- Department of Chemistry
- Faculty of Basic and Applied Science
- Madhav University
- Sirohi
- India
| | - Anuj S. Sharma
- Department of Chemistry
- School of Science
- Gujarat University
- Ahmedabad
- India
| | | | - Vinay S. Sharma
- Department of Chemistry
- Faculty of Basic and Applied Science
- Madhav University
- Sirohi
- India
| | - Mohd Athar
- Department of Chemistry
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar
- India
| | - Jigar Y. Soni
- Department of Chemistry
- Faculty of Basic and Applied Science
- Madhav University
- Sirohi
- India
| |
Collapse
|
25
|
Bhanja P, Modak A, Bhaumik A. Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO
2
Fixation Reactions. Chemistry 2018; 24:7278-7297. [DOI: 10.1002/chem.201800075] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Piyali Bhanja
- Department of Materials ScienceIndian Association for the Cultivation of Science 2A & B Raja S. C. Mullick Road, Jadavpur Kolkata 700 032 India
| | - Arindam Modak
- Department of Materials ScienceIndian Association for the Cultivation of Science 2A & B Raja S. C. Mullick Road, Jadavpur Kolkata 700 032 India
| | - Asim Bhaumik
- Department of Materials ScienceIndian Association for the Cultivation of Science 2A & B Raja S. C. Mullick Road, Jadavpur Kolkata 700 032 India
| |
Collapse
|
26
|
Das S, Mondal P, Ghosh S, Satpati B, Deka S, Islam SM, Bala T. A facile synthesis strategy to couple porous nanocubes of CeO2 with Ag nanoparticles: an excellent catalyst with enhanced reactivity for the ‘click reaction’ and carboxylation of terminal alkynes. NEW J CHEM 2018. [DOI: 10.1039/c8nj00665b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CeO2–Ag nanocomposite was synthesized by modifying the surface of CeO2 with DMP and its catalytic activity was shown for click reaction and carboxylation of terminal alkynes.
Collapse
Affiliation(s)
- Subhasis Das
- Department of Chemistry
- University of Calcutta
- Kolkata-700009
- India
| | | | | | - Biswarup Satpati
- Surface Physics and Material Science Division
- Saha Institute of Nuclear Physics
- HBNI
- Kolkata-700064
- India
| | - Sasanka Deka
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | | | - Tanushree Bala
- Department of Chemistry
- University of Calcutta
- Kolkata-700009
- India
| |
Collapse
|
27
|
1,3-Bis(4-methylbenzyl)imidazol-2-ylidene silver(I) chloride catalyzed carboxylative coupling of terminal alkynes, butyl iodide and carbon dioxide. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Mousa AH, Fleckhaus A, Kondrashov M, Wendt OF. Aromatic PCN pincer palladium complexes: forming and breaking C C bonds. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Copper(0) Nanoparticles Supported on Al2O3 as Catalyst for Carboxylation of Terminal Alkynes. Catal Letters 2017. [DOI: 10.1007/s10562-017-2127-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Fatima T, Haque RA, Razali MR. A new strategy towards tridentate N -heterocyclic carbene ligands derived from benzimidazolium and mixed-azolium salt. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
He Y, Sun J, Guo FJ, Fang X, Zhou MD. Efficient synthesis of dibenzyl carbonates from benzyl halides and Cs 2 CO 3. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2017.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Yuan Y, Chen C, Zeng C, Mousavi B, Chaemchuen S, Verpoort F. Carboxylation of Terminal Alkynes with Carbon Dioxide Catalyzed by an In Situ Ag2O/N-Heterocyclic Carbene Precursor System. ChemCatChem 2017. [DOI: 10.1002/cctc.201601379] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 P.R. China
- School of Material Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Cheng Zeng
- School of Material Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Bibimaryam Mousavi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 P.R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 P.R. China
- School of Material Science and Engineering; Wuhan University of Technology; Wuhan 430070 P.R. China
- National Research Tomsk Polytechnic University; Lenin Avenue 30 Tomsk 634050 Russian Federation
- Global Campus Songdo; Ghent University; 119 Songdomunhwa-Ro, Yeonsu-Gu Incheon Korea
| |
Collapse
|
33
|
Guo FJ, Zhang ZZ, Wang JY, Sun J, Fang XC, Zhou MD. Silver-catalyzed one-pot synthesis of benzyl 2-alkynoates under ambient pressure of CO2 and ligand-free conditions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.12.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Yuan Y, Xie Y, Zeng C, Song D, Chaemchuen S, Chen C, Verpoort F. A simple and robust AgI/KOAc catalytic system for the carboxylative assembly of propargyl alcohols and carbon dioxide at atmospheric pressure. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00696a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, robust and economical AgI/KOAc system was developed for the carboxylative assembly of propargyl alcohols and CO2 under mild conditions applying an unprecedentedly low level of 0.05 mol% Ag loading.
Collapse
Affiliation(s)
- Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- PR China
- School of Materials Science and Engineering
| | - Yu Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Cheng Zeng
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Dandan Song
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- PR China
- School of Materials Science and Engineering
| |
Collapse
|