1
|
Yabuta R, Kobayashi N, Nakamura K. Electrofluorochromism based on the valence change of europium complexes in electrochemical devices with Prussian blue as the counter electrode. Phys Chem Chem Phys 2024; 26:28800-28807. [PMID: 39400262 DOI: 10.1039/d4cp03155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The electrofluorochromism of Eu complexes based on the valence change between Eu3+ and Eu2+ is demonstrated in a two-electrode electrochemical device consisting of Prussian blue (PB) as the counter electrode. This study aims to improve the electrofluorochromic (EFC) performance of luminescence switching between Eu3+ and Eu2+ by enhancing the electrochemical reactivity of the EFC device. By introducing a PB film as a counter electrode in a two-electrode device, the redox reaction of Eu3+/2+ is promoted because of charge compensation by the counter PB film. The increase in the reaction charge enables faster changes in the photoluminescence from Eu3+ to Eu2+ and an increase in the blue luminescence intensity from the Eu2+ state. This approach achieves a lowered driving voltage, accelerates the electrochemical redox reaction of the Eu complex, and enhances the reversibility of the valence change of the Eu ion.
Collapse
Affiliation(s)
- Ryoto Yabuta
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | - Norihisa Kobayashi
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | - Kazuki Nakamura
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
2
|
Wang X, Chen K, Xu D, Wu S, Wu P, Ji Z, Kuang J, Zhang KY, Liu S, Zhao Q. Cyclometalated Iridium(III) Complexes Containing Viologen-Modified Phenylpyridine Ligands as Electroluminochromic Active Molecules for Information Display. SMALL METHODS 2024; 8:e2400113. [PMID: 38552252 DOI: 10.1002/smtd.202400113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/03/2024] [Indexed: 11/22/2024]
Abstract
Electroluminochromic (ELC) materials have garnered significant research interest because of their potential applications in lighting, displaying, and sensing. These materials exhibit reversible modulation of photoluminescence under low-voltage stimuli. Here five phosphorescent iridium(III) complexes are reported featuring viologen-substituted 2-phenylpyridine (Vppy) ligands acting as electroactive components. Four of the complexes are bis-cyclometalated and coordinated with either neutral bipyridine derivatives or negatively charged 2-picolinate. The remaining complex is heteroleptic tris-cyclometalated, containing one Vppy and two 2-phenylquinoline ligands. Upon photoexcitation, the bis-cyclometalated complexes exhibit orange to red phosphorescence originating from mixed triplet metal-to-ligand charge transfer (3MLCT) and intraligand (3IL) dπ(Ir)/π(Vppy) → π*(Vppy) state, whereas the tris-cyclometalated complex is non-emissive due to a low Ir(IV/III) oxidation potential favoring oxidative quenching by the viologen pendants. When the cationic viologens are electrochemically reduced to their neutral form, the bis-cyclometalated complexes show a remarkable blue-shift in their phosphorescence maxima due to increased energy levels of the Vppy molecular orbitals. In the case of the tris-cyclometalated complex, reduction of the viologen groups interrupts the quenching process, leading to a luminescence turn-on. These complexes are used to develop ELC devices, which exhibit reversible luminescence response in terms of color or on-off switching under a low voltage of 2 V.
Collapse
Affiliation(s)
- Xuecheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kun Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Dandong Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shuzi Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Pengcheng Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Zhixin Ji
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jianru Kuang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kenneth Yin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Seddiki I, N’Diaye BI, Skene WG. Survey of Recent Advances in Molecular Fluorophores, Unconjugated Polymers, and Emerging Functional Materials Designed for Electrofluorochromic Use. Molecules 2023; 28:molecules28073225. [PMID: 37049988 PMCID: PMC10096808 DOI: 10.3390/molecules28073225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
In this review, recent advances that exploit the intrinsic emission of organic materials for reversibly modulating their intensity with applied potential are surveyed. Key design strategies that have been adopted during the past five years for developing such electrofluorochromic materials are presented, focusing on molecular fluorophores that are coupled with redox-active moieties, intrinsically electroactive molecular fluorophores, and unconjugated emissive organic polymers. The structural effects, main challenges, and strides toward addressing the limitations of emerging fluorescent materials that are electrochemically responsive are surveyed, along with how these can be adapted for their use in electrofluorochromic devices.
Collapse
Affiliation(s)
- Ilies Seddiki
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - Brelotte Idriss N’Diaye
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - W. G. Skene
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
4
|
Affiliation(s)
- Yu‐Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
5
|
Maroń AM, Szlapa-Kula A, Matussek M, Kruszynski R, Siwy M, Janeczek H, Grzelak J, Maćkowski S, Schab-Balcerzak E, Machura B. Photoluminescence enhancement of Re(i) carbonyl complexes bearing D-A and D-π-A ligands. Dalton Trans 2020; 49:4441-4453. [PMID: 32181459 DOI: 10.1039/c9dt04871e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three Re(i) carbonyl complexes [ReCl(CO)3(Ln)] bearing 2,2'-bipyridine, 2,2':6',2''-terpyridine, and 1,10-phenanthroline functionalized with diphenylamine/or triphenylamine units (L1-L3) were synthesized to explore the impact of highly electron donating units appended to the imine ligand on the thermal and optoelectronic properties of Re(i) systems. Additionally, for comparison, the ligands L1-3 and parent complexes [ReCl(CO)3(bipy)], [ReCl(CO)3(phen)] and [ReCl(CO)3(terpy-κ2N)] were investigated. The thermal stability was evaluated by differential scanning calorimetry. The ground- and excited-state electronic properties of the Re(i) complexes were studied by cyclic voltammetry and differential pulse voltammetry, absorption and emission spectroscopy, as well as using density-functional theory (DFT). The majority of the compounds form amorphous molecular materials with high glass transition temperatures above 100 °C. Compared to the unsubstituted complexes [ReCl(CO)3(bipy)], [ReCl(CO)3(phen)] and [ReCl(CO)3(terpy-κ2N)], the HOMO-LUMO gap of the corresponding Re(i) systems bearing modified imine ligands is reduced, and the decrease in the value of the ΔEH-L is mainly caused by the increase in HOMO energy level. In relation to the parent complexes, all designed Re(i) carbonyls were found to show enhanced photoluminescence, both in solution and in solid state. The investigated ligands and complexes were also preliminarily tested as luminophores in light emitting diodes with the structures ITO/PEDOT:PSS/compound/Al and ITO/PEDOT:PSS/PVK:PBD:compound/Al. The pronounced effect of the ligand chemical structure on electroluminescence ability was clearly visible.
Collapse
Affiliation(s)
- Anna M Maroń
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Agata Szlapa-Kula
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Marek Matussek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Rafal Kruszynski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Justyna Grzelak
- Nanophotonics Group, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100, Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100, Torun, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland. and Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| |
Collapse
|
6
|
Zhuang Y, Guo S, Deng Y, Liu S, Zhao Q. Electroluminochromic Materials and Devices Based on Metal Complexes. Chem Asian J 2019; 14:3791-3802. [PMID: 31568646 DOI: 10.1002/asia.201901209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Electroluminochromism (ELC) refers to an interesting phenomenon exhibited by a material whose luminescent properties can be reversibly modulated under an electrical stimulus. Such a luminescence-switching property has been widely used in various organic optoelectronic devices because it can simultaneously detect electrical and optical signals. Metal complexes are the promising candidates for ELC materials due to their sensitivity to an electrical stimulus. Herein, recent progress on electroluminochromic materials and devices based on various metal complexes has been summarized. Meanwhile, the applications of these complexes in data recording and security protection have also been discussed. Finally, a brief conclusion and outlook are presented, pointing out that the development of electroluminochromic metal complexes with excellent performance is important because they play a vital role in future intelligent optoelectronic devices.
Collapse
Affiliation(s)
- Yanling Zhuang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P.R. China
| | - Song Guo
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P.R. China
| | - Yongjing Deng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P.R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P.R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P.R. China
| |
Collapse
|
7
|
Jia WG, Cheng MX, Gao LL, Tan SM, Wang C, Liu X, Lee R. A ruthenium bisoxazoline complex as a photoredox catalyst for nitro compound reduction under visible light. Dalton Trans 2019; 48:9949-9953. [PMID: 31237588 DOI: 10.1039/c9dt00428a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An unreported ruthenium(ii) complex containing bisoxazoline ligands has been synthesized and characterized. To test the catalytic ability of the ruthenium complex, the synthesis of anilines from nitro compounds in the presence of a mild reducing agent sodium borohydride and visible light has been developed. Mechanistic studies involving the experiment and DFT calculations suggest that the reaction could involve a radical pathway with the assistance of a photoredox catalyst.
Collapse
Affiliation(s)
- Wei-Guo Jia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Ming-Xia Cheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Li-Li Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Siu Min Tan
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| | - Chao Wang
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| | - Xiaogang Liu
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| | - Richmond Lee
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| |
Collapse
|
8
|
Electroluminochromic Materials: From Molecules to Polymers. Polymers (Basel) 2019; 11:polym11010098. [PMID: 30960082 PMCID: PMC6402020 DOI: 10.3390/polym11010098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/29/2018] [Accepted: 01/01/2019] [Indexed: 01/07/2023] Open
Abstract
Electroluminochromism is an interesting property found in certain classes of molecules and polymers whose photoluminescence can be modulated through the application of an external electrical bias. Unlike electrochromic materials, electroluminochromic counterparts and their applications are comparatively fewer in quantity and are less established. Nonetheless, there prevails an increasing interest in this class of electro-active materials due to their potential applications in optoelectronics, such as smart-displays, and chemical and biological sensing. This review seeks to showcase the different classes of electroluminochromic materials with focus on (i) organic molecules, (ii) transition metal complexes, and (iii) organic polymers. The mechanisms and electroluminochromic performance of these classes of materials are summarized. This review should allow scientists to have a better and deeper understanding of materials design strategies and, more importantly, structure-property relationships and, thus, develops electroluminochromic materials with desired performance in the future.
Collapse
|
9
|
Feng J, Shao JY, Nie HJ, Gong ZL, Zhong YW. Synthesis and electrochemical and spectroscopic studies of a N , N , N' , N' -tetraphenylbenzidine-bridged bis(2,2 ' -bipyridine) ligand and diruthenium complex. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Wu SH, Shao JY, Dai X, Cui X, Su H, Zhong YW. Synthesis and Characterization of Tris(bidentate) Ruthenium Complexes of Di(pyrid-2-yl)(methyl)amine. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Si-Hai Wu
- School of Biomedical Sciences; Huaqiao University; 362021 Quanzhou Fujian China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center for Excellence in Molecular Sciences; Chinese Academy of Sciences; 100190 Beijing China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center for Excellence in Molecular Sciences; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Xiuling Cui
- School of Biomedical Sciences; Huaqiao University; 362021 Quanzhou Fujian China
| | - Hongmei Su
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center for Excellence in Molecular Sciences; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
- College of Chemistry; Beijing Normal University; 100875 Beijing China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center for Excellence in Molecular Sciences; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| |
Collapse
|
11
|
Hua C, Rizzuto FJ, Zhang X, Tuna F, Collison D, D'Alessandro DM. Spectroelectrochemical properties of a Ru(ii) complex with a thiazolo[5,4-d]thiazole triarylamine ligand. NEW J CHEM 2017. [DOI: 10.1039/c6nj02802k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A new electroactive bridging ligand based on the donor (triarylamine) and acceptor (thiazolothiazole) units has been designed and incorporated into a diruthenium complex.
Collapse
Affiliation(s)
- Carol Hua
- School of Chemistry
- The University of Sydney
- New South Wales 2006
- Australia
| | - Felix J. Rizzuto
- School of Chemistry
- The University of Sydney
- New South Wales 2006
- Australia
| | - Xuan Zhang
- School of Chemistry
- The University of Sydney
- New South Wales 2006
- Australia
- School of Chemistry and Chemical Engineering
| | - Floriana Tuna
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | - David Collison
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | | |
Collapse
|