1
|
Sarkar P, Manamel LT, Saha P, Jana C, Sarmah A, Mohanan KU, Das BC, Mukherjee C. A triradical-containing trinuclear Pd(II) complex: spin-polarized electronic transmission, analog resistive switching and neuromorphic advancements. MATERIALS HORIZONS 2024. [PMID: 39468942 DOI: 10.1039/d4mh00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Neuromorphic computation has emerged as a potential alternative to subvert the von Neumann bottleneck issue in conventional computing. In this context, the development of resistive switching-based memristor devices mimicking various synaptic functionalities has engendered paramount attention. Here, we report a triradical-containing trinuclear Pd(II) cluster with a cyclohexane-like framework constituted by the Pd-Se coordination motif displaying facile memristor property with neuromorphic functionality as a thin-film device. The metal-ligand complex (complex 1) possessed an St = 1/2 ground state by experiencing a spin-frustrated-type magnetic coupling phenomenon amongst the three ligand-based organic radicals (SR = 1/2), coordinated to the Pd(II) ions. Three reversible one-electron reduction waves countered with a one-electron and one two-electron reversible oxidation waves were noticed in the cyclic voltammogram of the complex, confirming electrons accepting and releasing capacity of the complex at low potentials, i.e., within +0.2 V to -1.1 V. Employing the radical-containing complex 1 as the active thin-film sandwiched between two orthogonal electrodes, resistive switching based memristor property with biological synaptic actions were successfully emulated. Intriguingly, the artificial neural network (ANN) simulated efficient pattern recognition demonstrated using the recorded potentiation and depression curves from the device, which is a step ahead for the hardware realization of neuromorphic computing. The performance of the ANN on MNIST data with reduced image resolution has further been evaluated. Density functional theory (DFT)-based theoretical calculation predicted that the spin-polarized electronic transmission substantiated the memristive property in the neutral complex 1.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Litty Thomas Manamel
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Vithura, Trivandrum 695551, Kerala, India.
| | - Puranjay Saha
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Vithura, Trivandrum 695551, Kerala, India.
| | - Chinmay Jana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Amrit Sarmah
- Department of Molecular Modelling, Institute of Organic Chemistry and Biochemistry ASCR, v.v.i. Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Kannan Udaya Mohanan
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Bikas C Das
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Vithura, Trivandrum 695551, Kerala, India.
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Mukhopadhyay N, Sengupta A, Vijay AK, Lloret F, Mukherjee R. Ni(II) complexes of a new tetradentate NN'N''O picolinoyl-1,2-phenylenediamide-phenolate redox-active ligand at different redox levels. Dalton Trans 2022; 51:9017-9029. [PMID: 35638812 DOI: 10.1039/d2dt01043g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Three square planar nickel(II) complexes of a new asymmetric tetradentate redox-active ligand H3L2 in its deprotonated form, at three redox levels, open-shell semiquinonate(1-) π radical, quinone(0) and closed-shell dianion of its 2-aminophenolate part, have been synthesized. The coordinated ligand provides N (pyridine) and N' and N'' (carboxamide and 1,2-phenylenediamide, respectively) and O (phenolate) donor sites. Cyclic voltammetry on the parent complex [Ni(L2)] 1 in CH2Cl2 established a three-membered electron-transfer series (oxidative response at E1/2 = 0.57 V and reductive response at -0.32 V vs. SCE) consisting of neutral, monocationic and monoanionic [Ni(L2)]z (z = 0, 1+ and 1-). Oxidation of 1 with AgSbF6 affords [Ni(L2)](SbF6) (2) and reduction of 1 with cobaltocene yields [Co(η5-C5H5)2][Ni(L2)] (3). The molecular structures of 1·CH3CN, 2·0.5CH2Cl2 and 3·C6H6 have been determined by X-ray crystallography at 100 K. Characterization by 1H NMR, X-band EPR (gav = 2.006 (solid); 2.008 (CH2Cl2-C6H5CH3 glass); 80 K) and UV-VIS-NIR spectral properties established that 1, 2 and 3 have [NiII{(L2)˙2-}], [NiII{(L2)-}]+/1+ and [NiII{(L2)3-}]-/1- electronic states, respectively. Thus, the redox processes are ligand-centred. While 1 possesses paramagnetic St (total spin) = 1/2, 2 and 3 possess diamagnetic ground-state St = 0. Interestingly, the variable-temperature (2-300 K) magnetic measurement reveals that 1 with the St = 1/2 ground state attains the antiferromagnetic St = 0 state at a very low temperature, due to weak noncovalent interactions via π-π stacking. Density functional theory (DFT) electronic structural calculations at the B3LYP level of theory rationalized the experimental results. In the UV-VIS-NIR spectra, broad absorptions are recorded for 1 and 2 in the range of 800-1600 nm; however, such an absorption is absent for 3. Time-dependent (TD)-DFT calculations provide a very good fit with the experimental spectra and allow us to identify the observed electronic transitions.
Collapse
Affiliation(s)
- Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Arunava Sengupta
- Department of Chemistry, Techno India University, West Bengal, Kolkata 700091, India
| | - Aswin Kottapurath Vijay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de València, Polígono de la Coma, s/n, 46980 Paterna, València, Spain
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
3
|
Pashanova KI, Poddel'sky AI, Piskunov AV. Complexes of “late” transition metals of the 3d row based on functionalized o-iminobenzoquinone type ligands: Interrelation of molecular and electronic structure, magnetic behaviour. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Ershova IV, Meshcheryakova IN, Trofimova OY, Pashanova KI, Arsenyeva KV, Khamaletdinova NM, Smolyaninov IV, Arsenyev MV, Cherkasov AV, Piskunov AV. Complexes of Metal Halides with Unreduced o-(Imino)quinones. Inorg Chem 2021; 60:12309-12322. [PMID: 34339176 DOI: 10.1021/acs.inorgchem.1c01514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of complexes of metal halides with unreduced quinone-type ligands have been synthesized and characterized in detail. The 3,6-di-tert-butyl-o-benzoquinone (1) and 4,6-di-tert-butyl-N-aryl-substituted o-iminobenzoquinones (2-5) (aryl is 2,6-dimethylphenyl in 2, 2-methyl-6-ethylphenyl in 3, 2,6-diethylphenyl in 4, and 2,6-diisopropylphenyl in 5) were used to obtain the molecular complexes with metal 12 group halides as well as with indium(III) iodide. The molecular structures of five complexes, bearing an unreduced form of redox-active ligand, have been established by single-crystal X-ray analysis. The spectral data, electrochemical measurements, and DFT calculations indicate the significant transformations of the molecular orbitals of 1-5 upon complexation with Lewis acids. The reduction potentials of o-(imino)quinones in complexes with metal halides shift into the anodic region versus uncoordinated ones. The choice of metal halide allows varying the shift magnitude up to 1.7 V in 2·CdI2. The change of the oxidizing ability of the 1-5 upon coordination with Lewis acids enables the oxidation of mercury and ferrocene, infeasible for free ligands.
Collapse
Affiliation(s)
- Irina V Ershova
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Irina N Meshcheryakova
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Olesya Yu Trofimova
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Kira I Pashanova
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Kseniya V Arsenyeva
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Nadiya M Khamaletdinova
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Ivan V Smolyaninov
- Astrakhan State Technical University, 16 Tatisheva str., 414056 Astrakhan, Russia
| | - Maxim V Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Anton V Cherkasov
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Alexandr V Piskunov
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Sinitsa DK, Sukhikh TS, Konchenko SN, Pushkarevsky NA. Synthesis, structures, and one- or two-electron reduction reactivity of mononuclear lanthanide (Ho, Dy) complexes with sterically hindered o-iminobenzoquinone ligands. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Okhlopkova LS, Smolyaninov IV, Poddel’skii AI. Heterometallic Complexes Based on Triphenylantimony(V) Quinone-Catecholate. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420110068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Meshcheryakova IN, Arsenyeva KV, Fukin GK, Cherkasov VK, Piskunov AV. Stable N-heterocyclic carbene derivatives of copper(i) and silver(i) containing radical anion redox active ligands. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Nickel(II) derivatives based on o-iminobenzoquinone-type ligands: Structural modifications, magnetism and electrochemical peculiarities. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Nasibipour M, Safaei E, Wrzeszcz G, Wojtczak A. Tuning of the redox potential and catalytic activity of a new Cu(ii) complex byo-iminobenzosemiquinone as an electron-reservoir ligand. NEW J CHEM 2020. [DOI: 10.1039/c9nj06396j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis and characterization of a new Cu(ii) complex, LNIS2CuII(LNIS=o-iminobenzosemiquinone), are reported.
Collapse
Affiliation(s)
| | - Elham Safaei
- Department of Chemistry
- College of Sciences
- Shiraz
- Iran
| | - Grzegorz Wrzeszcz
- Faculty of Chemistry
- Nicolaus Copernicus University in Torun
- 87-100 Torun
- Poland
| | - Andrzej Wojtczak
- Faculty of Chemistry
- Nicolaus Copernicus University in Torun
- 87-100 Torun
- Poland
| |
Collapse
|
10
|
Morris TW, Huerfano IJ, Wang M, Wisman DL, Cabelof AC, Din NU, Tempas CD, Le D, Polezhaev AV, Rahman TS, Caulton KG, Tait SL. Multi-electron Reduction Capacity and Multiple Binding Pockets in Metal-Organic Redox Assembly at Surfaces. Chemistry 2019; 25:5565-5573. [PMID: 30746807 DOI: 10.1002/chem.201900002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/08/2019] [Indexed: 01/12/2023]
Abstract
Metal-ligand complexation at surfaces utilizing redox-active ligands has been demonstrated to produce uniform single-site metals centers in regular coordination networks. Two key design considerations are the electron storage capacity of the ligand and the metal-coordinating pockets on the ligand. In an effort to move toward greater complexity in the systems, particularly dinuclear metal centers, we designed and synthesized tetraethyltetra-aza-anthraquinone, TAAQ, which has superior electron storage capabilities and four ligating pockets in a diverging geometry. Cyclic voltammetry studies of the free ligand demonstrate its ability to undergo up to a four-electron reduction. Solution-based studies with an analogous ligand, diethyldi-aza-anthraquinone, demonstrate these redox capabilities in a molecular environment. Surface studies conducted on the Au(111) surface demonstrate TAAQ's ability to complex with Fe. This complexation can be observed at different stoichiometric ratios of Fe:TAAQ as Fe 2p core level shifts in X-ray photoelectron spectroscopy. Scanning tunneling microscopy experiments confirmed the formation of metal-organic coordination structures. The striking feature of these structures is their irregularity, which indicates the presence of multiple local binding motifs. Density functional theory calculations confirm several energetically accessible Fe:TAAQ isomers, which accounts for the non-uniformity of the chains.
Collapse
Affiliation(s)
- Tobias W Morris
- Departments of Chemistry, Indiana University, Bloomington, IN, 47401, USA
| | - I J Huerfano
- Departments of Chemistry, Indiana University, Bloomington, IN, 47401, USA
| | - Miao Wang
- Department of Physics, Indiana University, Bloomington, IN, 47401, USA
| | - David L Wisman
- Departments of Chemistry, Indiana University, Bloomington, IN, 47401, USA.,NAVSEA Crane, Crane, IN, 47522, USA
| | - Alyssa C Cabelof
- Departments of Chemistry, Indiana University, Bloomington, IN, 47401, USA
| | - Naseem U Din
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | | | - Duy Le
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | | | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Kenneth G Caulton
- Departments of Chemistry, Indiana University, Bloomington, IN, 47401, USA
| | - Steven L Tait
- Departments of Chemistry, Indiana University, Bloomington, IN, 47401, USA.,Department of Physics, Indiana University, Bloomington, IN, 47401, USA
| |
Collapse
|
11
|
Klementyeva SV, Lukoyanov AN, Afonin MY, Mörtel M, Smolentsev AI, Abramov PA, Starikova AA, Khusniyarov MM, Konchenko SN. Europium and ytterbium complexes with o-iminoquinonato ligands: synthesis, structure, and magnetic behavior. Dalton Trans 2019; 48:3338-3348. [PMID: 30778457 DOI: 10.1039/c8dt04849e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexes of divalent ytterbium (1) and europium (2) with a dianionic o-amidophenolate ligand were prepared by both the direct reduction of 4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-iminobenzoquinone (dpp-IQ) and the salt metathesis reaction of potassium o-amidophenolate with LnI2 (Ln = Yb, Eu). Oxidation of o-amidophenolates 1, 2 with one equivalent of dpp-IQ as well as the salt metathesis reaction of potassium o-iminosemiquinolate with LnI2 afforded ligand mixed-valent o-iminosemiquinonato-amidophenolato complexes of trivalent ytterbium (3) and europium (4). All novel complexes 1-4 were fully characterized, including the solid state structures of 1 and 2 determined by single crystal X-ray diffraction. The magnetic properties of paramagnetic 2-4 were examined.
Collapse
Affiliation(s)
- Svetlana V Klementyeva
- Kazan Federal University, A.M. Butlerov Institute of Chemistry, 420008, Kremlevskaya str. 29/1, Kazan, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rajput A, Saha A, Barman SK, Lloret F, Mukherjee R. [Cu II{(L ISQ)˙ -} 2] (H 2L: thioether-appended o-aminophenol ligand) monocation triggers change in donor site from N 2O 2 to N 2O (2)S and valence-tautomerism. Dalton Trans 2019; 48:1795-1813. [PMID: 30644480 DOI: 10.1039/c8dt03778g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using a potentially tridentate o-aminophenol-based redox-active ligand H2L1 (2-[2-(benzylthio)phenylamino]-4,6-di-tert-butylphenol) in its deprotonated form, [Cu(L1)2] has been synthesized and crystallized as [CuII(L1)2]·CH2Cl2 (1·CH2Cl2). A cyclic voltammetry experiment (in CH2Cl2; V vs. SCE (saturated calomel electrode)) on 1·CH2Cl2 exhibits two oxidative (E = 0.20 V (peak-to-peak separation, ΔEp = 100 mV) and E = 0.90 V (ΔEp = 140 mV)) and two reductive (E = -0.52 V (ΔEp = 110 mV) and E = -0.92 V (ΔEp = 120 mV)) responses. Upon oxidation using a stoichiometric amount of [FeIII(η5-C5H5)2](PF6), 1·CH2Cl2 yielded [Cu(L1)2](PF6) (2). Structural analysis (100 K) reveals that 1·CH2Cl2 is a four-coordinate bis(iminosemiquinonato)copper(ii) complex (CuN2O2 coordination), and that the thioethers remain uncoordinated. The twisted geometry of 1 (distorted tetrahedral) results in considerable changes in the electronic structure, compared to well-known square-planar analogues. Crystallographic analysis of 2 both at 100 K and at 293 K reveals that it is effectively a four-coordinate complex with a CuN2OS coordination; however, a substantial interaction with the other phenolate O is observed. The metal-ligand bond distances and metric parameters associated with the o-aminophenolate rings indicate a valence-tautomeric (VT) equilibrium involving monocationic (iminosemiquinonato)(iminoquinone)copper(ii) and bis(iminoquinone)copper(i). Complex 1·CH2Cl2 is a three-spin system and a magnetic study (4-300 K) established that it has a S = 1/2 ground-state, owing to the strong antiferromagnetic coupling between the unpaired spin of the copper(ii) and the iminosemiquinonate(1-) π-radical anion. Electron paramagnetic resonance (EPR) spectral studies corroborate this result. Complex 2 is diamagnetic and the existence of VT in 2 was probed using variable-temperature (248-328 K) 1H NMR and EPR (100-298 K) spectral measurements and X-ray photoelectron spectroscopic studies at 298 K. Remarkably, modification of the well-studied 2-anilino-4,6-di-tert-butylphenol by incorporation of a benzylthioether arm leads to the occurrence of VT in 2. The electronic structure of 1·CH2Cl2 and 2 has been assigned using density functional theory (DFT) calculations at the B3LYP-D3 level of theory. Time-dependent (TD)-DFT calculations have been performed to elucidate the origin of the observed UV-VIS-NIR absorptions.
Collapse
Affiliation(s)
- Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. and Department of Basic and Applied Sciences, School of Engineering, G. D. Goenka University, Sohna Road, Gurugram 122 103, Haryana, India
| | - Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| | - Francesc Lloret
- Departament de Quımíca, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de Valeńcia, Polígono de la Coma, s/n, 46980-Paterna, València, Spain
| | | |
Collapse
|
13
|
Rajput A, Sharma AK, Barman SK, Lloret F, Mukherjee R. Six-coordinate [Co III(L) 2] z (z = 1-, 0, 1+) complexes of an azo-appended o-aminophenolate in amidate(2-) and iminosemiquinonate π-radical (1-) redox-levels: the existence of valence-tautomerism. Dalton Trans 2018; 47:17086-17101. [PMID: 30465680 DOI: 10.1039/c8dt03257b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aerobic reaction of the ligand H2L1, 2-(2-phenylazo)-anilino-4,6-di-tert-butylphenol, CoCl2·6H2O and Et3N in MeOH under refluxing conditions produces, after work-up and recrystallization, black crystals of [Co(L1)2] (1). When examined by cyclic voltammetry, 1 displays in CH2Cl2 three one-electron redox responses: two oxidative, E11/2 = 0.30 V (peak-to-peak separation, ΔEp = 100 mV) and E21/2 = 1.04 V (ΔEp = 120 mV), and one reductive E1/2 = -0.27 V (ΔEp = 120 mV) vs. SCE. Consequently, 1 is chemically oxidized by 1 equiv. of [FeIII(η5-C5H5)2][PF6], affording the isolation of deep purple crystals of [Co(L1)2][PF6]·2CH2Cl2 (2), and one-electron reduction with [CoII(η5-C5H5)2] yielded bluish-black crystals of [CoIII(η5-C5H5)2][Co(L1)2]·MeCN (3). A solid sample of 1 exhibits temperature-independent (50-300 K) magnetism, revealing the presence of a free radical (S = 1/2), which exhibits an isotropic EPR signal (g = 2.003) at 298 K and at 77 K an eight-line feature characteristic of hyperfine-interaction of the radical with the Co (I = 7/2) nucleus. Based on X-ray structural parameters of 1-3 at 100 K, magnetic and EPR spectral behaviour of 1, and variable-temperature (233-313 K) 1H NMR spectral features of 1-3 and 13C NMR spectra at 298 K of 2 and 3 in CDCl3 point to the electronic structure of the complexes as either [CoIII{(LAP)2-}{(LISQ)}˙-] or [CoIII{(L1)2}˙3-] (delocalized nature favours the latter description) (1), [CoIII{(LISQ)˙-}2][PF6]·2CH2Cl2 (2) and [CoIII(η5-C5H5)2][CoIII{(LAP)2-}2]·MeCN (3) [(LAP)2- and (LISQ)˙- represent the redox-level of coordinated ligands o-amidophenolate(2-) ion and o-iminobenzosemiquinonate(1-) π-radical ion, respectively]. Notably, all the observed redox processes are ligand-centred. To the best of our knowledge, this is the first time that six-coordinate complexes of a common tridentate o-aminophenolate-based ligand have been structurally characterized for the parent 1, its monocation 2 and the monoanion 3 counterparts. Temperature-dependent 1H NMR spectra reveal the existence of valence-tautomeric equilibria in 1-3. Density Functional Theory (DFT) calculations at the B3LYP-level of theory corroborate the electronic structural assignment of 1-3 from experimental data. The origins of the observed UV-VIS-NIR absorptions for 1-3 have been assigned, based on time-dependent (TD)-DFT calculations.
Collapse
Affiliation(s)
- Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| | | | | | | | | |
Collapse
|
14
|
Paul GC, Das K, Maity S, Begum S, Srivastava HK, Mukherjee C. Geometry-Driven Iminosemiquinone Radical to Cu(II) Electron Transfer and Stabilization of an Elusive Five-Coordinate Cu(I) Complex: Synthesis, Characterization, and Reactivity with KO2. Inorg Chem 2018; 58:1782-1793. [DOI: 10.1021/acs.inorgchem.8b01931] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ganesh Chandra Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kanu Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Suvendu Maity
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Samiyara Begum
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Hemant Kumar Srivastava
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
15
|
Piskunov AV, Pashanova KI, Ershova IV, Bogomyakov AS, Smolyaninov IV, Starikov AG, Kubrin SP, Fukin GK. Pentacoordinated cloro-bis-o-iminosemiquinonato Mn and Fe complexes. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Interacting metal and ligand based open shell systems: Challenges for experiment and theory. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Moutet J, Philouze C, du Moulinet d'Hardemare A, Leconte N, Thomas F. Ni(II) Complexes of the Redox-Active Bis(2-aminophenyl)dipyrrin: Structural, Spectroscopic, and Theoretical Characterization of Three Members of an Electron Transfer Series. Inorg Chem 2017; 56:6380-6392. [PMID: 28513171 DOI: 10.1021/acs.inorgchem.7b00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The sterically hindered bis(2-aminophenyl)dipyrrin ligand H3NL was prepared. X-ray diffraction discloses a bifurcated hydrogen bonding network involving the dipyrrin and one aniline ring. The reaction of H3NL with one equivalent of nickel(II) in the air produces a paramagnetic neutral complex, which absorbs intensively in the Vis-NIR region. Its electron paramagnetic resonance spectrum displays resonances at g1 = 2.033, g2 = 2.008, and g3 = 1.962 that are reminiscent of an (S = 1/2) system having a predominant organic radical character. Both the structural investigation (X-ray diffraction) and density functional theory calculations on [NiII(NL•)] points to an unprecedented mixed "pyrrolyl-anilinyl" radical character. The neutral complex [NiII(NL•)] exhibits both a reversible oxidation wave at -0.28 V vs Fc+/Fc and a reversible reduction wave at -0.91 V. The anion was found to be highly air-sensitive, but could be prepared by reduction with cobaltocene and structurally characterized. It comprises a Ni(II) ion coordinated to a closed-shell trianionic ligand and hence can be formulated as [NiII(NL)]-. The cation was generated by reacting [NiII(NL•)] with one equivalent of silver hexafluoroantimonate. By X-ray diffraction we established that it contains an oxidized, closed-shell ligand coordinated to a nickel(II) ion. We found that a reliable hallmark for both the oxidation state of the ligand and the extent of delocalization within the series is the bond connecting the dipyrrin and the aniline, which ranges between 1.391 Å (cation) and 1.449 Å (anion). The cation and anion exhibit a rich Vis-NIR spectrum, despite their nonradical nature. The low energy bands correspond to ligand-based electronic excitations. Hence, the HOMO-LUMO gap is small, and the redox processes in the electron transfer series are exclusively ligand-centered.
Collapse
Affiliation(s)
- Jules Moutet
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes , B. P. 53, 38041 Grenoble cedex 9, France
| | - Christian Philouze
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes , B. P. 53, 38041 Grenoble cedex 9, France
| | - Amaury du Moulinet d'Hardemare
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes , B. P. 53, 38041 Grenoble cedex 9, France
| | - Nicolas Leconte
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes , B. P. 53, 38041 Grenoble cedex 9, France
| | - Fabrice Thomas
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes , B. P. 53, 38041 Grenoble cedex 9, France
| |
Collapse
|
18
|
Paul GC, Ghorai S, Mukherjee C. Monoradical-containing four-coordinate Co(iii) complexes: homolytic S–S and Se–Se bond cleavage and catalytic isocyanate to urea conversion under sunlight. Chem Commun (Camb) 2017; 53:8022-8025. [DOI: 10.1039/c7cc03486e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Four-coordinate, Co(iii)-monoradical complexes participated in homolytic S–S/Se–Se bonds scission and catalyzed the conversion of RNCO to the corresponding urea derivatives (TON 480) under sunlight.
Collapse
Affiliation(s)
| | - Samir Ghorai
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Chandan Mukherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| |
Collapse
|