1
|
Chuprin AS, Belova SA, Vologzhanina AV, Dorovatovskii PV, Voloshin YZ. Preparation, X-ray Characterization, and Reactivity of the Rod-like and Angular Germanium- and Titanium(IV)-Capped Iron(II) Bis-Clathrochelates and Their Mono- and Bis-Capped (Semi)clathrochelate Precursors. Inorg Chem 2024; 63:4299-4311. [PMID: 38364313 DOI: 10.1021/acs.inorgchem.3c04319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Transmetalation of the bis{triethylantimony(V)}-capped iron(II) tris-α-dioximate with n-butylboronic acid afforded the mixed antimony, boron cross-linked clathrochelate with single reactive antimony(V)-based apical fragment. This macrobicyclic precursor easily underwent the transmetalation reactions with germanium and titanium(IV) alkoxides to give the rod-like and angular FeII2MIV-trinuclear bis-clathrochelates. Those of the aforementioned diantimony(V)-capped complex with 3- and 4-carboxyphenylboronic acids afforded the monoboron-capped iron(II) semiclathrochelates, undergoing a double-cyclization (macrobicyclization) with germanium- and titanium(IV)-based capping agents. The reactions in the low-temperature range unexpectedly gave the stable 2:1 associates, formed by the bridging of two carboxyl-terminated macrobicyclic molecules of the mixed carboxylboron, triethylantimony-capped iron(II) clathrochelate with a triethylantimony(V)-based linker fragment. The obtained complexes were characterized using elemental analysis, MALDI-TOF, 1H and 13C{1H} NMR and UV-vis spectra, and single-crystal XRD experiments. The encapsulated iron(II) ion in their 3D-molecules is situated almost in the center of its FeN6-coordination polyhedron possessing a truncated trigonal-pyramidal geometry. Fe-N distances fall in the range 1.887(7)-1.945(4) Å characteristic of the low-spin iron(II) complexes. The cross-linking titanium and germanium(IV) ions in the corresponding bis-clathrochelate molecules form the octahedral MIVO6-coordination polyhedra, the MIV-O distances of which vary from 1.946(2) to 1.964(2) Å and from 1.879(7) to 1.907(6) Å, respectively.
Collapse
Affiliation(s)
- Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| | - Svetlana A Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center Kurchatov Institute, 1 Kurchatova pl., 123098 Moscow, Russia
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| |
Collapse
|
2
|
Thaler R, Kopacka H, Wurst K, Müller T, Neururer FR, Hohloch S, Lippmann P, Ott I, Bildstein B. Clathrochelate Complexes Containing Axial Cymantrene and Tromancenium Moieties. Eur J Inorg Chem 2023; 26:e202300368. [PMID: 38505780 PMCID: PMC10947045 DOI: 10.1002/ejic.202300368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/28/2023] [Indexed: 03/21/2024]
Abstract
New clathrochelate complexes of manganese, iron and cobalt containing peripheral organometallic manganese moieties cymantrene or tromancenium were synthesized via self-assembly from di/tri-topic dioximes, metal templates and cymantrene/tromancenium boronic acid pinacol esters. These air-stable, highly colored, oligometallic complexes are composed of various combinations of MnIFeIIMnI, MnICoIIMnI, MnIMnIIMnIIMnI and MnICoIICoIIMnI metal assemblies with corresponding complicated magnetic and electrochemical properties. Full spectroscopic and structural characterization by 1H/11B/13C NMR, HRMS, IR, UV-vis, single crystal XRD and CV (cyclic voltammetry) is provided. Tetrametallic complexes containing tromanceniumyl substituents with two CoII or MnII central metals exhibit promising anticancer properties against different tumor cell lines.
Collapse
Affiliation(s)
- Reinhard Thaler
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Holger Kopacka
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Klaus Wurst
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Thomas Müller
- Institut für Organische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Florian R. Neururer
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Stephan Hohloch
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstr. 5538106BraunschweigGermany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstr. 5538106BraunschweigGermany
| | - Benno Bildstein
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
3
|
Chuprin AS, Pavlov AA, Vologzhanina AV, Dorovatovskii PV, Makarenkov AV, Ol'shevskaya VA, Dudkin SV, Voloshin YZ. Multistep synthesis and X-ray structures of carboxyl-terminated hybrid iron(II) phthalocyaninatoclathrochelates and their postsynthetic transformation into polytopic carboranyl-containing derivatives. Dalton Trans 2023; 52:3884-3895. [PMID: 36877091 DOI: 10.1039/d3dt00076a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A multistep general synthetic strategy towards polytopic carboranyl-containing (semi)clathrochelate metal complexes, based on the template synthesis, transmetallation, amide condensation and 1,3-dipolar cycloaddition reactions, is developed. Their mono(semi)clathrochelate precursors with a single reactive group were obtained using a transmetallation of the triethylantimony-capped macrobicyclic precursor. The thus obtained carboxyl-terminated iron(II) semiclathrochelate underwent a macrobicyclization with zirconium(IV) phthalocyaninate to form the corresponding phthalocyaninatoclathrochelate. The direct one-pot template condensation of the suitable chelating and cross-linking ligand synthons on the Fe2+ ion as a matrix was also used for its preparation. Further amide condensation of the aforementioned semiclathrochelate and hybrid complexes with propargylamine in the presence of carbonyldiimidazole gave the (pseudo)cage derivatives with a terminal CC bond. Their "click" reaction with an appropriate carboranylmethyl azide afforded the ditopic carboranosemiclathrochelates and the tritopic carboranyl-containing phthalocyaninatoclathrochelates with a flexible spacer fragment between their polyhedral entities. The obtained new complexes were characterized using elemental analysis, MALDI-TOF mass spectrometry, multinuclear NMR, and UV-vis spectroscopy, and by single crystal X-ray diffraction experiments. Their FeN6-coordination polyhedra show a truncated trigonal-pyramidal geometry, while the cross-linking heptacoordinate Zr4+ or Hf4+ cations in the hybrid compounds form the MIVN4O3-coordination polyhedra with the geometry of a capped trigonal prism.
Collapse
Affiliation(s)
- Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- BMSTU Center of National Technological Initiative "Digital Material Science: New Material and Substances", Bauman Moscow State Technical University, 2nd Baumanskaya st. 5, 105005, Moscow, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Pavel V Dorovatovskii
- National Research Center Kurchatov Institute, 1 Kurchatova pl., 123098, Moscow, Russia
| | - Anton V Makarenkov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Valentina A Ol'shevskaya
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Semyon V Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
4
|
Limarev IP, Zelinskii GE, Belova SA, Dorovatovskii PV, Vologzhanina AV, Lebed EG, Voloshin YZ. Monoribbed‐functionalized macrobicyclic iron(
II
) complexes decorated with terminal reactive and vector groups: synthetic strategy towards, chemical transformations and structural characterization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilya P. Limarev
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Genrikh E. Zelinskii
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Svetlana A. Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | | | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
| | - Ekaterina G. Lebed
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Yan Z. Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| |
Collapse
|
5
|
Giraldi E, Scopelliti R, Fadaei-Tirani F, Severin K. Metal-Stabilized Boronate Ester Cages. Inorg Chem 2021; 60:10873-10879. [PMID: 34291934 DOI: 10.1021/acs.inorgchem.1c01719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular cages with arylboronate ester caps at the vertices are described. The cages were obtained by metal-templated polycondensation reactions of a tris(2-formylpyridine oxime) ligand with arylboronic acids. Suited templates are triflate or triflimide salts of ZnII, FeII, CoII, or MnII. In the products, the metal ions are coordinated internally to the pyridyl and oximato N atoms adjacent to the boronate ester, resulting in an improved hydrolytic stability of the latter. It is possible to decorate the cages with cyano or aldehyde groups using functionalized arylboronic acids. The aldehyde groups allow for a postsynthetic modification of the cages via an imine bond formation.
Collapse
Affiliation(s)
- Erica Giraldi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Xia Q, Zhang J, Chen X, Cheng C, Chu D, Tang X, Li H, Cui Y. Synthesis, structure and property of boron-based metal–organic materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Zhu L, Deng Z, Huo L, Gao S. Assembled synthesis of luminescent mono/double‐layered 2D and 3D Zn (II)‐based coordination polymers tuned by flexible bis (pyridyl)propane‐1,2‐diamines and diverse organic dicarboxylates. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Li‐Na Zhu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
| | - Zhao‐Peng Deng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
| | - Li‐Hua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
| | - Shan Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
| |
Collapse
|
8
|
Woodhouse SS, De Silva DNT, Jameson GB, Cutler DJ, Sanz S, Brechin EK, Davies CG, Jameson GNL, Plieger PG. New salicylaldoximato-borate ligands resulting from anion hydrolysis and their respective copper and iron complexes. Dalton Trans 2019; 48:11872-11881. [PMID: 31309211 DOI: 10.1039/c9dt01968e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Anion hydrolysis reactions between salicylaldoximato ligands (L'-L''') and copper and iron BF4- metal salts, have resulted in the formation of new salicylaldoximato borate containing transition metal complexes: [Fe2(L' + 2H)2](BF4)2(MeOH)4 (C1), [Fe3(L'' + 4H)(OH)2(Py)2](BF4)2(H2O)2(Py)2 (C2), and [Cu2(L''' + H)2Cl2] (C3). Each of the complexes have been structurally characterised, revealing the indirect role boron plays in the formation of these complexes. For complexes C1 and C2, Mössbauer spectroscopy confirmed the existence of Fe(iii) oxidation states. SQUID magnetometry measurements were performed on complexes C2 and C3, revealing the presence of two competing exchange pathways between the three Fe(iii) centres in C2, with antiferromagnetic exchange dominating. For C3 weak antiferromagnetic exchange dominated between the two Cu(ii) centres.
Collapse
Affiliation(s)
- Sidney S Woodhouse
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - D Nirosha T De Silva
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Geoffrey B Jameson
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Daniel J Cutler
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Sergio Sanz
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Euan K Brechin
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Casey G Davies
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Guy N L Jameson
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul G Plieger
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| |
Collapse
|
9
|
Bila JL, Pijeat J, Ramorini A, Fadaei-Tirani F, Scopelliti R, Baudat E, Severin K. Porous networks based on iron(ii) clathrochelate complexes. Dalton Trans 2019; 48:4582-4588. [PMID: 30882828 DOI: 10.1039/c9dt00546c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microporous networks based on boronate ester-capped iron(ii) clathrochelate complexes are described. The networks were obtained by covalent cross-linking of tetrabrominated clathrochelate complexes via Suzuki-Miyaura polycross-coupling reactions with diboronic acids, or by Sonogashira-Hagihara polycross-coupling of clathrochelate complexes with terminal alkyne functions and 1,3,5-tribromobenzene. The networks display permanent porosity with apparent Brunauer-Emmett-Teller surface areas of up to SABET = 593 m2 g-1. A clathrochelate complex based on an enantiopure dioximato ligand was used to prepare chiral networks. One of these networks was shown to preferentially absorb d-tryptophan over l-tryptophan.
Collapse
Affiliation(s)
- José L Bila
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
10
|
Jansze SM, Severin K. Clathrochelate Metalloligands in Supramolecular Chemistry and Materials Science. Acc Chem Res 2018; 51:2139-2147. [PMID: 30156828 DOI: 10.1021/acs.accounts.8b00306] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The term "clathrochelate" describes a complex in which a coordinatively saturated metal ion is surrounded by a macropolycyclic ligand. First examples of clathrochelate complexes were reported 50 years ago. Meanwhile, the synthesis and reactivity of clathrochelates have been investigated in detail, and numerous applications have been explored. In this Account, we summarize work on the utilization of transition metal clathrochelates as metalloligands in supramolecular chemistry and materials science, with special focus on results from our group. First, we discuss the chemistry of boron-capped clathrochelates. These complexes are facile to synthesize by metal-templated condensation reactions. The synthesis is modular, and it is straightforward to implement structural variations. Importantly, it is possible to attach functional groups such as amines, pyridines, or carboxylic acids to the ligand periphery. Other noteworthy features of boron-capped clathrochelates are high thermodynamic and kinetic stability, tunable redox potential, and good solubility. Next, we show that clathrochelate-based metalloligands can be used to build molecularly defined metal-ligand assemblies of nanoscale dimensions. Different molecular architectures are described, including coordination cages with unusual gyrobifastigium or square orthobicupola-like structures. Metalloligands containing multiple clathrochelate complexes are particularly well suited to build large metal-ligand assemblies (>3 nm) with minimal synthetic efforts. Boron-capped clathrochelates have also been investigated in the context of materials chemistry. Linear or cross-linked clathrochelate polymers were found to display permanent porosity. Furthermore, such polymers were used to prepare conducting films on electrodes. Clathrochelate metalloligands are well suited to prepare metal-organic frameworks (MOFs). The high stability of clathrochelates ensures compatibility with harsh reaction conditions, and it mitigates potential problems such as exchange reactions. Boron-capped clathrochelates can be decorated with functional groups in lateral and apical position, and it is possible to use these complexes as multiconnected nodes in polymeric structures. Overall, we hope to convey the utility of clathrochelate complexes in supramolecular chemistry and materials science. The work published thus far gives a first glimpse of the potential of these compounds, but there are other directions, which are waiting to be explored. For example, it will be interesting to study the properties of nanostructures based on chiral clathrochelate complexes. Furthermore, the redox and magnetic properties of clathrochelates may give rise to novel functional materials. Given that clathrochelates are straightforward to prepare, we hope that others will join the efforts to explore the supramolecular and materials chemistry of these interesting molecular building blocks.
Collapse
Affiliation(s)
- Suzanne M. Jansze
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Rota Martir D, Rajamalli P, Cordes DB, Slawin AMZ, Zysman-Colman E. Marigold Flower-Like Assemblies of Phosphorescent Iridium-Silver Coordination Polymers. Macromol Rapid Commun 2018; 39:e1800501. [PMID: 30133031 DOI: 10.1002/marc.201800501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/24/2018] [Indexed: 12/17/2022]
Abstract
Racemic and enantiopure phosphorescent iridium(III)-silver(I) coordination polymers are reported. The polymers rac-, Λ-, and Δ-IrAg were formed, respectively, by the assembly of the chiral iridium metalloligands rac-, Λ-, and Δ-[Ir(mesppy)2 (qpy)]PF6 (rac-, Λ- and Δ-Ir) where mesppy is 2-phenyl-4-mesitylpyridinato and qpy is 4,4':2',2'':4'',4'''-quaterpyridine, and Ag+ ions through Npy -Ag linear coordination. The polymers have been characterized in MeNO2 solution by 1 H and 1 H DOSY NMR and CD spectroscopies and in the solid-state by scanning electron microscopy (SEM). The crystal structures of the racemic polymer rac-IrAg has been obtained by X-ray diffraction. The polymers rac-, Λ-, and Δ-IrAg exhibited orange/red emission in solution, in films and as crystals, with intensities comparable to those of the corresponding iridium metalloligands rac-, Λ-, and Δ-Ir. The morphology of the enantiopure polymers in the solid-state resembles marigold flower-like nano-porous assemblies while the racemic polymer possesses an irregular morphology formation.
Collapse
Affiliation(s)
- Diego Rota Martir
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Pachaiyappan Rajamalli
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Alexandra M Z Slawin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
12
|
Bila JL, Marmier M, Zhurov KO, Scopelliti R, Živković I, Rønnow HM, Shaik NE, Sienkiewicz A, Fink C, Severin K. Homo- and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- José L. Bila
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Sciences et Ingénierie Chimiques; 1015 Lausanne Switzerland
| | - Mathieu Marmier
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Sciences et Ingénierie Chimiques; 1015 Lausanne Switzerland
| | - Konstantin O. Zhurov
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Sciences et Ingénierie Chimiques; 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Sciences et Ingénierie Chimiques; 1015 Lausanne Switzerland
| | | | | | | | | | - Cornel Fink
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Sciences et Ingénierie Chimiques; 1015 Lausanne Switzerland
| | - Kay Severin
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Sciences et Ingénierie Chimiques; 1015 Lausanne Switzerland
| |
Collapse
|
13
|
Zelinskii GE, Belov AS, Chuprin AS, Pavlov AA, Vologzhanina AV, Lebed EG, Bugaenko MG, Voloshin YZ. Clathrochelate iron(II) tris-nioximates with non-equivalent capping groups and their precursors: synthetic strategies, X-ray structure, and reactivity. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1348602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Genrikh E. Zelinskii
- Laboratory for aliphatic organoboron compounds, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander S. Belov
- Laboratory for aliphatic organoboron compounds, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander S. Chuprin
- Laboratory for aliphatic organoboron compounds, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
- Laboratory for coordination chemistry of transition elements, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Pavlov
- Laboratory for Nuclear Magnetic Resonance, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Vologzhanina
- Laboratory for X-Ray Diffraction Studies, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina G. Lebed
- Laboratory for aliphatic organoboron compounds, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Margarita G. Bugaenko
- Laboratory for Macromolecular Chemistry, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Yan Z. Voloshin
- Laboratory for aliphatic organoboron compounds, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
- Laboratory for coordination chemistry of transition elements, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Zelinskii GE, Dudkin SV, Chuprin AS, Pavlov AA, Vologzhanina AV, Lebed EG, Zubavichus YV, Voloshin YZ. Synthesis, X-ray structure and reactivity of the vinyl-terminated iron(II) clathrochelate precursors and their cage derivatives with non-equivalent capping groups. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Saha R, Samanta D, Bhattacharyya AJ, Mukherjee PS. Stepwise Construction of Self-Assembled Heterometallic Cages Showing High Proton Conductivity. Chemistry 2017; 23:8980-8986. [DOI: 10.1002/chem.201701596] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Rupak Saha
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore- 560012 India
| | - Dipak Samanta
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore- 560012 India
| | | | - Partha Sarathi Mukherjee
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore- 560012 India
| |
Collapse
|
16
|
Cecot G, Marmier M, Geremia S, De Zorzi R, Vologzhanina AV, Pattison P, Solari E, Fadaei Tirani F, Scopelliti R, Severin K. The Intricate Structural Chemistry of M II2nL n-Type Assemblies. J Am Chem Soc 2017; 139:8371-8381. [PMID: 28603972 DOI: 10.1021/jacs.7b04861] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The reaction of cis-blocked, square-planar MII complexes with tetratopic N-donor ligands is known to give metallasupramolecular assemblies of the formula M2nLn. These assemblies typically adopt barrel-like structures, with the ligands paneling the sides of the barrels. However, alternative structures are possible, as demonstrated by the recent discovery of a Pt8L4 cage with unusual gyrobifastigium-like geometry. To date, the factors that govern the assembly of MII2nLn complexes are not well understood. Herein, we provide a geometric analysis of M2nLn complexes, and we discuss how size and geometry of the ligand is expected to influence the self-assembly process. The theoretical analysis is complemented by experimental studies using different cis-blocked PtII complexes and metalloligands with four divergent pyridyl groups. Mononuclear metalloligands gave mainly assemblies of type Pt8L4, which adopt barrel- or gyrobifastigium-like structures. Larger assemblies can also form, as evidenced by the crystallographic characterization of a Pt10L5 complex and a Pt16L8 complex. The former adopts a pentagonal barrel structure, whereas the latter displays a barrel structure with a distorted square orthobicupola geometry. The Pt16L8 complex has a molecular weight of more than 23 kDa and a diameter of 4.5 nm, making it the largest, structurally characterized M2nLn complex described to date. A dinuclear metalloligand was employed for the targeted synthesis of pentagonal Pt10L5 barrels, which are formed in nearly quantitative yields.
Collapse
Affiliation(s)
| | | | - Silvano Geremia
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste , 34127 Trieste, Italy
| | - Rita De Zorzi
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste , 34127 Trieste, Italy
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
17
|
Jansze SM, Wise MD, Vologzhanina AV, Scopelliti R, Severin K. Pd II2L 4-type coordination cages up to three nanometers in size. Chem Sci 2017; 8:1901-1908. [PMID: 28567267 PMCID: PMC5444114 DOI: 10.1039/c6sc04732g] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
The utilization of large ligands in coordination-based self-assembly represents an attractive strategy for the construction of supramolecular assemblies more than two nanometers in size. However, the implementation of this strategy is hampered by the fact that the preparation of such ligands often requires substantial synthetic effort. Herein, we describe a simple one-step protocol, which allows large bipyridyl ligands with a bent shape to be synthesized from easily accessible and/or commercially available starting materials. The ligands were used to construct PdII2L4-type coordination cages of unprecedented size. Furthermore, we provide evidence that these cages may be stabilized by close intramolecular packing of lipophilic ligand side chains. Packing effects of this kind are frequently encountered in protein assemblies, but they are seldom used as a design element in metallasupramolecular chemistry.
Collapse
Affiliation(s)
- Suzanne M Jansze
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Matthew D Wise
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , 119991 Moscow , Russia
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| |
Collapse
|
18
|
Li K, Blatov VA, Fan T, Zheng TR, Zhang YQ, Li BL, Wu B. A series of Cd(ii) coordination polymers based on flexible bis(triazole) and multicarboxylate ligands: topological diversity, entanglement and properties. CrystEngComm 2017. [DOI: 10.1039/c7ce01176h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight Cd(ii) coordination polymers with diverse topologies based on 1,4-bis(1,2,4-triazol-4-ylmethyl)benzene and multicarboxylate ligands were synthesized and characterized. The 3D topologies of 1, 2 and 3 are unprecedented.
Collapse
Affiliation(s)
- Ke Li
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Vladislav A. Blatov
- Samara Center for Theoretical Materials Science (SCTMS)
- Samara University
- Samara 443011
- Russia
- School of Materials Science and Engineering
| | - Tao Fan
- School of Materials Science and Engineering
- Northwestern Polytechnical University
- PR China
| | - Tian-Rui Zheng
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Ya-Qian Zhang
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Bao-Long Li
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Bing Wu
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|