1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Liu C, Sheng B, Zhou Q, Xia Y, Zou Y, Chimtali PJ, Cao D, Chu Y, Zhao S, Long R, Chen S, Song L. Manipulating d-Band Center of Nickel by Single-Iodine-Atom Strategy for Boosted Alkaline Hydrogen Evolution Reaction. J Am Chem Soc 2024; 146:26844-26854. [PMID: 39299703 DOI: 10.1021/jacs.4c07607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Ni-based electrocatalysts have been predicted as highly potential candidates for hydrogen evolution reaction (HER); however, their applicability is hindered by an unfavorable d-band energy level (Ed). Moreover, precise d-band structural engineering of Ni-based materials is deterred by appropriative synthesis methods and experimental characterization. Herein, we meticulously synthesize a special single-iodine-atom structure (I-Ni@C) and characterize the Ed manipulation via resonant inelastic X-ray scattering (RIXS) spectroscopy to fill this gap. The complex catalytic mechanism has been elucidated via synchrotron radiation-based multitechniques (SRMS) including X-ray absorption fine structure (XAFS), in situ synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy, and near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). In particular, RIXS is innovatively applied to reveal the precise regulation of Ni Ed of I-Ni@C. Consequently, the role of such single-iodine-atom strategy is confirmed to not only facilitate the moderate Ed of the Ni site for balancing the adsorption/desorption capacities of key intermediates but also act as a bridge to enhance the electronic interaction between Ni and the carbon shell for forming a localized polarized electric field conducive to H2O dissociation. As a result, I-Ni@C exhibits an enhanced alkaline hydrogen evolution performance with an overpotential of 78 mV at 10 mA/cm2 and superior stability, surpassing the majority of the reported Ni-based catalysts. Overall, this study has managed to successfully tailor the d-band center of materials from the SRMS perspective, which has crucial implications for nanotechnology, chemistry, catalysis, and other fields.
Collapse
Affiliation(s)
- Chongjing Liu
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Quan Zhou
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Yujian Xia
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Ying Zou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Peter Joseph Chimtali
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Dengfeng Cao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Yongheng Chu
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Sirui Zhao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Ran Long
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
3
|
Jeong D, Kim H, Cho J. Oxidation of Aldehydes into Carboxylic Acids by a Mononuclear Manganese(III) Iodosylbenzene Complex through Electrophilic C-H Bond Activation. J Am Chem Soc 2023; 145:888-897. [PMID: 36598425 DOI: 10.1021/jacs.2c09274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The oxidation of aldehyde is one of the fundamental reactions in the biological system. Various synthetic procedures and catalysts have been developed to convert aldehydes into corresponding carboxylic acids efficiently under ambient conditions. In this work, we report the oxidation of aldehydes by a mononuclear manganese(III) iodosylbenzene complex, [MnIII(TBDAP)(OIPh)(OH)]2+ (1), with kinetic and mechanistic studies in detail. The reaction of 1 with aldehydes resulted in the formation of corresponding carboxylic acids via a pre-equilibrium state. Hammett plot and reaction rates of 1 with 1°-, 2°-, and 3°-aldehydes revealed the electrophilicity of 1 in the aldehyde oxidation. A kinetic isotope effect experiment and reactivity of 1 toward cyclohexanecarboxaldehyde (CCA) analogues indicate that the reaction of 1 with aldehyde occurs through the rate-determining C-H bond activation at the formyl group. The reaction rate of 1 with CCA is correlated to the bond dissociation energy of the formyl group plotting a linear correlation with other aliphatic C-H bonds. Density functional theory calculations found that 1 electrostatically interacts with CCA at the pre-equilibrium state in which the C-H bond activation of the formyl group is performed as the most feasible pathway. Surprisingly, the rate-determining step is characterized as hydride transfer from CCA to 1, affording an (oxo)methylium intermediate. At the fundamental level, it is revealed that the hydride transfer is composed of H atom abstraction followed by a fast electron transfer. Catalytic reactions of aldehydes by 1 are also presented with a broad substrate scope. This novel mechanistic study gives better insights into the metal oxygen chemistry and would be prominently valuable for development of transition metal catalysts.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Hyokyung Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea.,Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
4
|
Jeong D, Cho J. Hydride-Transfer Reaction to a Mononuclear Manganese(III) Iodosylarene Complex. Inorg Chem 2021; 60:7612-7616. [PMID: 33978417 DOI: 10.1021/acs.inorgchem.1c00562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal iodosylarene species have received interest because of their potential oxidative power as a catalyst. We present the first example of hydride-transfer reactions to a mononuclear manganese(III) iodosylbenzene complex, [MnIII(TBDAP)(OIPh)(OH)]2+ (1; TBDAP = N,N-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane), with dihydronicotinamide adenine dinucleotide (NADH) analogues. Kinetic studies show that hydride-transfer from the NADH analogues to 1 occurs via a proton-coupled electron transfer, followed by a rapid electron transfer.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
5
|
Jeong D, Hirao H, Cho J. Theoretical Study on the Aliphatic
C─H
Bond Activation by a Mononuclear Manganese(
III
) Iodosylbenzene Complex. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
- Department of Emerging Materials Science DGIST Daegu 42988 Korea
| | - Hajime Hirao
- Warshel Institute for Computational Biology School of Life and Health Sciences, The Chinese University of Hong Kong Shenzhen, Longgang District, Shenzhen 518172 China
| | - Jaeheung Cho
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
- Department of Emerging Materials Science DGIST Daegu 42988 Korea
| |
Collapse
|
6
|
Guo M, Lee YM, Fukuzumi S, Nam W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213807] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Tania, Houston SD, Sharp-Bucknall L, Poynder TB, Albayer M, Dutton JL. PhI(OTf) 2 Does Not Exist (Yet)*. Chemistry 2020; 26:15863-15866. [PMID: 32959910 DOI: 10.1002/chem.202003819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/28/2022]
Abstract
PhI(OTf)2 has been used for the past 30 years as a strong I(III) oxidant for organic and inorganic transformations. It has been reported to be generated in situ from the reactions of either PhI(OAc)2 or PhI=O with two equivalents of trimethylsilyl trifluoromethanesulfonate (TMS-OTf). In this report it is shown that neither of these reactions generate a solution with spectroscopic data consistent with PhI(OTf)2 , with supporting theoretical calculations, and thus this compound should not be invoked as the species acting as the oxidant for transformations that have been associated with its use.
Collapse
Affiliation(s)
- Tania
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| | - Sevan D Houston
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| | - Lachlan Sharp-Bucknall
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| | - Tiffany B Poynder
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| | - Mohammad Albayer
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| | - Jason L Dutton
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Kumar R, Pandey B, Sen A, Ansari M, Sharma S, Rajaraman G. Role of oxidation state, ferryl-oxygen, and ligand architecture on the reactivity of popular high-valent FeIV=O species: A theoretical perspective. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213397] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Yang J, Seo MS, Kim KH, Lee Y, Fukuzumi S, Shearer J, Nam W. Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Kyung Ha Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Jason Shearer
- Department of Chemistry Trinity University San Antonio TX 78212 USA
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
10
|
Stennett CR, Nguyen TH, Power PP. Characterization of the “Absent” Vanadium Oxo V(═O){N(SiMe3)2}3, Imido V(═NSiMe3){N(SiMe3)2}3, and Imido-Siloxy V(═NSiMe3)(OSiMe3){N(SiMe3)2}2 Complexes Derived from V{N(SiMe3)2}3 and Kinetic Study of the Spontaneous Conversion of the Oxo Complex into Its Imido-Siloxy Isomer. Inorg Chem 2020; 59:11079-11088. [DOI: 10.1021/acs.inorgchem.0c01572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cary R. Stennett
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Thien H. Nguyen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Philip P. Power
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
11
|
Yang J, Seo MS, Kim KH, Lee Y, Fukuzumi S, Shearer J, Nam W. Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angew Chem Int Ed Engl 2020; 59:13581-13585. [DOI: 10.1002/anie.202005091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Kyung Ha Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Jason Shearer
- Department of Chemistry Trinity University San Antonio TX 78212 USA
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
12
|
Bryant MR, Richardson C. Hypervalent organoiodine(v) metal-organic frameworks: syntheses, thermal studies and stoichiometric oxidants. Dalton Trans 2020; 49:5167-5174. [PMID: 32236275 DOI: 10.1039/d0dt00870b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Iodinated analogues of the highly porous IRMOF-9 and UiO-67 frameworks were prepared and post-synthetically oxidised with dimethyldioxirane (DMDO). Analysis by X-ray photoelectron spectroscopy (XPS) confirmed promotion to the iodine(v) state and detailed differential scanning calorimetry-thermal gravimetric analysis (DSC-TGA) showed the hypervalent metal-organic frameworks (MOFs) undergo exothermic elimination at ∼200 °C with XPS showing hypervalency is maintained. The hypervalent MOFs are active heterogeneous reagents in sulfoxidation and alcohol oxidation reactions. The crystallinity and porosity of the MOFs were maintained following post-synthetic oxidation, thermolysis and after the heterogeneous reactions, as shown by powder X-ray diffraction (PXRD) and gas adsorption analyses. This work showcases the unique ability MOFs hold for studying chemical reactions and the potential for hypervalent organoiodine MOFs as reuseable oxidants.
Collapse
Affiliation(s)
- Macguire R Bryant
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
13
|
Jeong D, Ohta T, Cho J. Structure and Reactivity of a Mononuclear Nonheme Manganese(III)–Iodosylarene Complex. J Am Chem Soc 2018; 140:16037-16041. [DOI: 10.1021/jacs.8b10244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Donghyun Jeong
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo 679-5148, Japan
| | - Jaeheung Cho
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea
| |
Collapse
|
14
|
Jafari motlagh R, Zakavi S. Synthesis, characterization and oxidizing strength of a nano-structured hypervalent iodine( v) compound: iodylbenzene nanofibers. NEW J CHEM 2018. [DOI: 10.1039/c8nj04759f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, disproportionation of freshly synthesized iodosylbenzene in boiling distilled water in the presence of triethylene glycol monomethyl ether was used to prepare ribbon-like iodylbenzene nanostructures with a wide length distribution (250 nm up to several microns) and a width in the range of 100–200 nm.
Collapse
Affiliation(s)
- Reza Jafari motlagh
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Saeed Zakavi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| |
Collapse
|
15
|
Wegeberg C, Donald WA, McKenzie CJ. Noncovalent Halogen Bonding as a Mechanism for Gas-Phase Clustering. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2209-2216. [PMID: 28717931 DOI: 10.1007/s13361-017-1722-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Gas-phase clustering of nonionizable iodylbenzene (PhIO2) is attributed to supramolecular halogen bonding. Electrospray ionization results in the formation of ions of proton-charged and preferably sodium-charged clusters assignable to [H(PhIO2) n ]+, n = 1-7; [Na(PhIO2) n ]+, n = 1-6; [Na2(PhIO2) n ]2+, n = 7-20; [HNa(PhIO2) n ]2+, n = 6-19; [HNa2(PhIO2) n ]3+, n = 15-30; and [Na3(PhIO2) n ]3+, n = 14-30. The largest cluster detected has a supramolecular mass of 7147 Da. Electronic structure calculations using the M06-2X functional with the 6-311++G(d,p) basis set for C, H, and O, and LANL2DZ basis set for I and Na predict 298 K binding enthalpies for the protonated and sodiated iodylbenzene dimers and trimers are greater than 180 kJ/mol. This is exceptionally high in comparison with other protonated and sodiated clusters with well-established binding enthalpies. Strongly halogen-bonded motifs found in the crystalline phases of PhIO2 and its derivatives serve as models for the structures of larger gas-phase clusters, and calculations on simple model gas-phase dimer and trimer clusters result in similar motifs. This is the first account of halogen bonding playing an extensive role in gas-phase associations. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5320, Odense M, Denmark
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5320, Odense M, Denmark.
| |
Collapse
|
16
|
Kang Y, Li XX, Cho KB, Sun W, Xia C, Nam W, Wang Y. Mutable Properties of Nonheme Iron(III)–Iodosylarene Complexes Result in the Elusive Multiple-Oxidant Mechanism. J Am Chem Soc 2017; 139:7444-7447. [DOI: 10.1021/jacs.7b03310] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yiran Kang
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Xi Li
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Kyung-Bin Cho
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wei Sun
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chungu Xia
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wonwoo Nam
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong Wang
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|