Werner D, Bayer U, Schädle D, Anwander R. Emergence of a New [NNN] Pincer Ligand via Si-H Bond Activation and β-Hydride Abstraction at Tetravalent Cerium.
Chemistry 2020;
26:12194-12205. [PMID:
32239686 PMCID:
PMC7540680 DOI:
10.1002/chem.202000625]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Indexed: 01/08/2023]
Abstract
The cerium(IV) pyrazolate complexes [Ce(Me2 pz)4 ]2 and [Ce(Me2 pz)4 (thf)] initiate β-hydride abstraction of the bis(dimethylsilyl)amido moiety, to afford a heteroleptic cerium(IV) species containing a dimethylpyrazolyl-substituted silylamido ligand, namely [Ce(Me2 pz)3 (bpsa)] (bpsa=bis((3,5-dimethylpyrazol-1-yl)dimethylsilyl)amido; Me2 pz =3,5-dimethylpyrazolato), along with some cerium(III) species. Remarkably, the nucleophilic attack of the pyrazolyl at the silicon atom and concomitant Si-H-bond cleavage is restricted to the tetravalent cerium oxidation state and appears to proceed via the formation of a transient cerium(IV) hydride, which engages in immediate redox chemistry. When [Ce(Me2 pz)4 ]2 is treated with [Li{N(SiMe3 )2 }], that is, in the absence of the SiH functionality, any redox chemistry did not occur. Instead, the ceric ate complex [LiCe2 (Me2 pz)9 ] and the stable mixed-ligand ceric species [Ce(Me2 pz)2 {N(SiMe3 )2 }2 ] were obtained.
Collapse