1
|
Wang Z, Zhang H, Zhang P, Di K, Zhao J, Wang B, Qu J, Ye S, Yang D. Stepwise Reduction of Redox Noninnocent Nitrosobenzene to Aniline via a Rare Phenylhydroxylamino Intermediate on a Thiolate-Bridged Dicobalt Scaffold. J Am Chem Soc 2024; 146:19737-19747. [PMID: 39008833 DOI: 10.1021/jacs.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Nitrosobenzene (PhNO) and phenylhydroxylamine (PhNHOH) are of paramount importance because of their involvement as crucial intermediates in the biological metabolism and catalytic transformation of nitrobenzene (PhNO2) to aniline (PhNH2). However, a complete reductive transformation cycle of PhNO to PhNH2 via the PhNHOH intermediate has not been reported yet. In this context, we design and construct a new thiolate-bridged dicobalt scaffold that can accomplish coordination activation and reductive transformation of PhNO. Notably, an unprecedented reversible ligand-based redox sequence PhNO0 ↔ PhNO•- ↔ PhNO2- can be achieved on this well-defined {CoIII(μ-SPh)2CoIII} functional platform. Further detailed reactivity investigations demonstrate that the PhNO0 and PhNO•- complexes cannot react with the usual hydrogen and hydride donors to afford the corresponding phenylhydroxylamino (PhNHO-) species. However, the double reduced PhNO2- complex can readily undergo N-protonation with an uncommon weak proton donor PhSH to selectively yield a stable dicobalt PhNHO- bridged complex with a high pKa value of 13-16. Cyclic voltammetry shows that there are two successive reduction events at E1/2 = -0.075 V and Ep = -1.08 V for the PhNO0 complex, which allows us to determine both bond dissociation energy (BDEN-H) of 59-63 kcal·mol-1 and thermodynamic hydricity (ΔGH-) of 71-75 kcal·mol-1 of the PhNHO- complex. Both values indicate that the PhNO•- complex is not a potent hydrogen abstractor and the PhNO0 complex is not an efficient hydride acceptor. In the presence of BH3 as a combination of protons and electrons, facile N-O bond cleavage of the coordinated PhNHO- group can be realized to generate PhNH2 and a dicobalt hydroxide-bridged complex. Overall, we present the first stepwise reductive sequence, PhNO0 ↔ PhNO•- ↔ PhNO2- ↔ PhNHO- → PhNH2.
Collapse
Affiliation(s)
- Zhijie Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Haoyan Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Kai Di
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Bioreactor Engineering, Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
2
|
Feng H, Yang D, Mei T, Zhang Y, Wang B, Qu J. Synthesis and Structure of Thiolate‐Bridged Diiron and Dicobalt Complexes Supported by Modified β‐Diketiminate Ligand. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huajin Feng
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Dawei Yang
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2# Linggong Road 116024 Dalian CHINA
| | - Tao Mei
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Yahui Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Baomin Wang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Jingping Qu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| |
Collapse
|
3
|
Construction of a low-valent thiolate-bridged dicobalt platform and its reactivity toward hydrogen activation and evolution. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Morgan F, Schaugaard R, Anderson D, Schlegel HB, Verani CN. Distinct Bimetallic Cooperativity Among Water Reduction Catalysts Containing [Co
III
Co
III
], [Ni
II
Ni
II
], and [Zn
II
Zn
II
] Cores. Chemistry 2022; 28:e202104426. [DOI: 10.1002/chem.202104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Fredricka Morgan
- Department of Chemistry Wayne State University 5101 Cass Ave. Detroit MI 48202 USA
| | - Richard Schaugaard
- Department of Chemistry Wayne State University 5101 Cass Ave. Detroit MI 48202 USA
| | - Dennis Anderson
- Department of Chemistry Wayne State University 5101 Cass Ave. Detroit MI 48202 USA
| | - H. Bernhard Schlegel
- Department of Chemistry Wayne State University 5101 Cass Ave. Detroit MI 48202 USA
| | - Cláudio N. Verani
- Department of Chemistry Wayne State University 5101 Cass Ave. Detroit MI 48202 USA
| |
Collapse
|
5
|
Xie Y, Miao Q, Deng W, Lu Y, Yang Y, Chen X, Liao RZ, Ye S, Tung CH, Wang W. Facile Transformations of a Binuclear Cp*Co(II) Diamidonaphthalene Complex to Mixed-Valent Co(II)Co(III), Co(III)(μ-H)Co(III), and Co(III)(μ-OH)Co(III) Derivatives. Inorg Chem 2022; 61:2204-2210. [PMID: 35049285 DOI: 10.1021/acs.inorgchem.1c03451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A diamido-bridged dicobalt complex supported by a diamidonaphthalene ligand, Cp*2Co2(μ-1,8-C10H8(NH)2) (1), was synthesized, and the reactivity relevant to redox transformations of the Co2N2 core was investigated. It was found that the Co(II)-Co(II) bond allows for protonation by [HPPh3][BF4] resulting in a bridging hydride, [1H]+, with pKa ∼ 7.6 in CH2Cl2. The diamidonaphthalene ligand can stabilize the binuclear system in the Co(II)Co(III) mixed-valent state (1+), which is capable of binding CO to afford [1-CO]+. Surprisingly, the mixed-valent complex also activates H2O to furnish a Co(III)Co(III) hydroxy complex [1-OH]+ accompanied by release of H2. The hydroxy ligand in [1-OH]+ is exchangeable, as demonstrated by 18O-labeling experiments on [1-OH]+ with H218O that led to the heavier isotopolog [1-18OH]+.
Collapse
Affiliation(s)
- Yufang Xie
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qiyi Miao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenhao Deng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilei Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yinuo Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaohui Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Dong W, Yang D, Mei T, Wang B, Qu J. Reversible Binding of Dinitrogen on a Thiolate-Bridged Cobalt-Ruthenium Complex Supported by a Flexible Bidentate Phosphine Ligand. Dalton Trans 2022; 51:9978-9982. [DOI: 10.1039/d2dt01534j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A well-defined thiolate-bridged cobalt-ruthenium complex is demonstrated to reversibly bind N2 by modulation of the auxiliary phosphine ligand, which is evidenced by time-dependent 1H NMR spectroscopy at different temperatures. Notably,...
Collapse
|
7
|
Synthesis, characterization and reactivity of thiolate-bridged cobalt-iron and ruthenium-iron complexes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Zhang S, Zhai X, Song Y, Feng L, Tung CH, Wang W. Insertion of BH3 into a Cobalt–Aryl Bond: Synthetic Routes to Arylborohydride and Borane-Amino Hydride Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shengnan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Xiaofang Zhai
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Yike Song
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, People’s Republic of China
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, People’s Republic of China
| |
Collapse
|
9
|
Li J, Yang D, Tong P, Wang B, Qu J. Facile C-N coupling of coordinated ammonia and labile carbonyl or acetonitrile promoted by a thiolate-bridged dicobalt reaction scaffold. Dalton Trans 2020; 49:11260-11267. [PMID: 32760933 DOI: 10.1039/d0dt02133d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
At low temperature, interaction of the thiolate-bridged dicobalt carbonyl complex [Cp*Co(i)(μ-SEt)2(CO)CoCp*][I] (Cp* = η5-C5Me5) (1) with NH3 resulted in the C-N coupling of the coordinated CO and amido group that originate from ammonia activation to afford a dicobalt formylamino complex [Cp*Co(μ-SEt)2(μ-η1:η1-O[double bond, length as m-dash]CNH2)CoCp*][I] (2). Interestingly, at relatively high temperatures, the labile CO ligand was replaced by NH3 to give a thiolate-bridged dicobalt ammonia complex [Cp*Co(i)(μ-SEt)2(NH3)CoCp*][I] (3). Subsequently, in the presence of the dehalogenation reagent AgPF6, the Co2S2 scaffold can simultaneously activate NH3 and MeCN to produce the complex [Cp*Co(MeCN)(μ-SEt)2(NH3)CoCp*][PF6]2 (4). Furthermore, in the presence of NaOEt, the facile occurrence of the intramolecular cyclization led to the formation of acetamidino-bridged dicobalt complex [Cp*Co(μ-SEt)2(μ-η1:η1-NH(CCH3)NH)CoCp*][PF6] (5), which may proceed through the nucleophilic attack of amido from NH3 to coordinated MeCN followed by the hydrogen atom transfer process. In the presence of MeCN, treatment of 5 with HBF4 released the corresponding [MeC(NH2)NH2]BF4; meanwhile, the [Co2S2] core structural scaffold remained. In this Co2S2 reaction system, the cooperative activation effect between the two cobalt centers plays an important role for NH3 activation and functionalization.
Collapse
Affiliation(s)
- Jianzhe Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China.
| | | | | | | | | |
Collapse
|
10
|
Wang C, Li J, Yang D, Tong P, Sun P, Wang B, Qu J. Synthesis, Isomerization and Electrocatalytic Properties of Thiolate‐Bridged Dicobalt Hydride Complexes with Different Substituents. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chunlong Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Jianzhe Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Peng Tong
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Puhua Sun
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
- Key Laboratory for Advanced Materials East China University of Science and Technology 200237 Shanghai P. R. China
| |
Collapse
|
11
|
Sun P, Yang D, Li Y, Wang B, Qu J. A bioinspired thiolate-bridged dinickel complex with a pendant amine: synthesis, structure and electrocatalytic properties. Dalton Trans 2020; 49:2151-2158. [PMID: 31994565 DOI: 10.1039/c9dt04493k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
By employing X(CH2CH2S-)2 (X = S, tpdt; X = O, opdt; X = NPh, npdt) as bridging ligands, four thiolate-bridged dinickel complexes supported by phosphine ligands, [(dppe)Ni(μ-1SSS':2SS-tpdt)Ni(dppe)][PF6]2 (1[PF6]2, dppe = Ph2P(CH2)2PPh2), [(dppe)Ni(μ-1SSN:2SS-npdt)Ni(dppe)][PF6]2 (2[PF6]2) and [(dppe)Ni(t-Cl)(μ-1SSX:2SS-C4H8S2X)Ni(dppe)][PF6] (3[PF6], X = S; 4[PF6], X = O) were facilely obtained by the salt metathesis reaction. These four thiolate-bridged dinickel complexes have all been fully characterized by spectroscopic methods and X-ray crystallography. In 2[PF6]2, elongation of the Ni-N bond distance, possibly caused by steric hindrance, indicates that the pendant nitrogen group shuttles between the two nickel centers in solution, which is evidenced by 31P{1H} NMR spectroscopic results. Furthermore, these thiolate-bridged dinickel complexes have all been proved to be electrocatalysts for proton reduction to hydrogen. Notably, complex 2[PF6]2 featuring a pendant amine group in the secondary coordination sphere exhibits the best catalytic activity at a relatively low overpotential.
Collapse
Affiliation(s)
- Puhua Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | | | | | | | | |
Collapse
|
12
|
Cai X, Hu W, Xu S, Yang D, Chen M, Shu M, Si R, Ding W, Zhu Y. Structural Relaxation Enabled by Internal Vacancy Available in a 24-Atom Gold Cluster Reinforces Catalytic Reactivity. J Am Chem Soc 2020; 142:4141-4153. [DOI: 10.1021/jacs.9b07761] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Weigang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Shun Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dan Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Mingyang Chen
- Center for Green Innovation, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Miao Shu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai 201204, China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai 201204, China
| | - Weiping Ding
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
13
|
You Q, Yang D, Xu S, Wang B, Qu J. Synthesis, characterization and structure of thiolate-bridged diruthenium and iron-ruthenium complexes with isocyanide ligands. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Smith PW, Ellis SR, Handford RC, Tilley TD. An Anionic Ruthenium Dihydride [Cp*(iPr2MeP)RuH2]− and Its Conversion to Heterobimetallic Ru(μ-H)2M (M = Ir or Cu) Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick W. Smith
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Scott R. Ellis
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Rex C. Handford
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| |
Collapse
|
15
|
Wu H, Li J, Yang D, Tong P, Zhao J, Wang B, Qu J. CO2 fixation and transformation on a thiolate-bridged dicobalt scaffold under oxidising conditions. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00423h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CO2 fixation and conversion promoted by a thiolate-bridged dicobalt complex in the presence of an oxidant.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jianzhe Li
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Peng Tong
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
- Key Laboratory for Advanced Materials
| |
Collapse
|
16
|
Zhang Y, Yang D, Li Y, Zhao X, Wang B, Qu J. Biomimetic catalytic oxidative coupling of thiols using thiolate-bridged dinuclear metal complexes containing iron in water under mild conditions. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01667h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green approach to disulfides via aerobic oxidative coupling of thiols was developed with a thiolate-bridged heteronuclear complex in water.
Collapse
Affiliation(s)
- Yahui Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Ying Li
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Xiangyu Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- Key Laboratory for Advanced Materials
| |
Collapse
|
17
|
Zhao X, Yang D, Zhang Y, Wang B, Qu J. Terminal alkyne insertion into a thiolate-bridged dirhodium hydride complex derived from heterolytic cleavage of H 2. Chem Commun (Camb) 2018; 54:11112-11115. [PMID: 30155542 DOI: 10.1039/c8cc05738a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thiolate-bridged dirhodium and diiridium complexes can facilely realize heterolytic cleavage of H2 across the metal-sulfur bond to generate the corresponding hydride bridged complexes. Furthermore, terminal alkynes can insert the Rh-H-Rh fragment to afford σ:π alkenyl bridged complexes and then convert to the corresponding alkenes in the presence of a reductant and an acid.
Collapse
Affiliation(s)
- Xiangyu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.
| | | | | | | | | |
Collapse
|
18
|
Zhao X, Yang D, Zhang Y, Wang B, Qu J. Highly β( Z)-Selective Hydrosilylation of Terminal Alkynes Catalyzed by Thiolate-Bridged Dirhodium Complexes. Org Lett 2018; 20:5357-5361. [PMID: 30152700 DOI: 10.1021/acs.orglett.8b02267] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of novel monothiolate-bridged dirhodium complexes, [Cp*Rh(μ-SR)(μ-Cl)2RhCp*][BF4] {Cp* = η5-C5Me5, R = tertiary butyl ( tBu), 1a; R = ferrocenyl (Fc), 1b; R = adamantyl (Ad), 1c} were designed and successfully synthesized, which can smoothly facilitate highly regioselective and stereoselective hydrosilylation of terminal alkynes to afford β( Z) vinylsilanes with good functional group compatibility. Furthermore, the hydride bridged dirhodium complex [Cp*Rh(μ-S tBu)(μ-Cl)(μ-H)RhCp*][BF4] (5) as a potential intermediate was obtained by the reaction of 1a with excess HSiEt3.
Collapse
Affiliation(s)
- Xiangyu Zhao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Yahui Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China.,Key Laboratory for Advanced Materials , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| |
Collapse
|
19
|
Zhang Y, Yang D, Li Y, Zhao X, Wang B, Qu J. Sulfur-Centered Reactivity of Oxidized Iron-Thiolate Complex toward Unsaturated Hydrocarbon Addition. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yahui Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ying Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiangyu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
20
|
Hogue RW, Schott O, Hanan GS, Brooker S. A Smorgasbord of 17 Cobalt Complexes Active for Photocatalytic Hydrogen Evolution. Chemistry 2018; 24:9820-9832. [DOI: 10.1002/chem.201800396] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Ross W. Hogue
- Department of Chemistry and MacDiarmid Institute for, Advanced Materials and Nanotechnology; University of Otago; P.O. Box 56 Dunedin 9054 New Zealand
| | - Olivier Schott
- Département de Chimie; Université de Montréal; 2900 Boulevard Edouard-Montpetit Montréal Quebec H3T 1J4 Canada
| | - Garry S. Hanan
- Département de Chimie; Université de Montréal; 2900 Boulevard Edouard-Montpetit Montréal Quebec H3T 1J4 Canada
| | - Sally Brooker
- Department of Chemistry and MacDiarmid Institute for, Advanced Materials and Nanotechnology; University of Otago; P.O. Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
21
|
Luo S, Siegler MA, Bouwman E. Dinuclear Nickel Complexes of Thiolate-Functionalized Carbene Ligands and Their Electrochemical Properties. Organometallics 2017; 37:740-747. [PMID: 29551851 PMCID: PMC5850092 DOI: 10.1021/acs.organomet.7b00576] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 02/04/2023]
Abstract
![]()
Four
dimeric nickel(II) complexes [Ni2Cl2(BnC2S)2] [1], [Ni2Cl2(BnC3S)2] [2], [Ni2(PyC2S)2]Br2 [3]Br2, and [Ni2(PyC3S)2]Br2 [4]Br2 of four different
thiolate-functionalized N-heterocyclic carbene (NHC) ligands were
synthesized, and their structures have been determined by single-crystal
X-ray crystallography. The four ligands differ by the alkyl chain
length between the thiolate group and the benzimidazole nitrogen (two
−C2– or three −C3–
carbon atoms) and the second functionality at the NHC being a benzyl
(Bn) or a pyridylmethyl (Py) group. The nickel(II) ions are coordinated
to the NHC carbon atom and the pendent thiolate group, which bridges
to the second nickel(II) ion creating the dinuclear structure. Additionally,
in compounds [1] and [2], the fourth coordination
position of the square-planar Ni(II) centers is occupied by the halide
ions, whereas in [3]2+ and [4]2+, the additional pendant pyridylmethyl groups complete
the coordination spheres of the nickel ions. The electrochemical properties
of the four complexes were studied using cyclic voltammetry and controlled-potential
coulometry methods. The thiolate-functionalized carbene complexes
[1] and [2] appear to be poor electrocatalysts
for the hydrogen evolution reaction; the complexes [3]Br2 and [4]Br2, bearing an extra
pyridylmethyl group, show higher catalytic activity in proton reduction,
indicating that the pyridine group plays an important role in the
catalytic cycle.
Collapse
Affiliation(s)
- Siyuan Luo
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Elisabeth Bouwman
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
22
|
Catalytic N−N bond cleavage of hydrazine by thiolate-bridged iron-ruthenium heteronuclear complexes. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Zhang Y, Tong P, Yang D, Li J, Wang B, Qu J. Migratory insertion and hydrogenation of a bridging azide in a thiolate-bridged dicobalt reaction platform. Chem Commun (Camb) 2017; 53:9854-9857. [PMID: 28825085 DOI: 10.1039/c7cc05092e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel well-defined thiolate-bridged dicobalt azido complex is converted to a rare sulfilimide-bridged dicobalt complex via nitrogen atom migratory insertion into the Co-S bond upon thermolysis. Intriguingly, the homolytic cleavage of hydrogen is achieved by this azide under mild conditions to furnish a partially hydrogenated azido complex.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.
| | | | | | | | | | | |
Collapse
|
24
|
Kpogo KK, Mazumder S, Wang D, Schlegel HB, Fiedler AT, Verani CN. Bimetallic Cooperativity in Proton Reduction with an Amido‐Bridged Cobalt Catalyst. Chemistry 2017; 23:9272-9279. [DOI: 10.1002/chem.201701982] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Kenneth K. Kpogo
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Shivnath Mazumder
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
- Current address: Department of Chemistry Hofstra University, Berliner Hall Hempstead NY 11549 USA
| | - Denan Wang
- Department of Chemistry Marquette University 535 N. 14th St. Milwaukee WI 53233 USA
| | - H. Bernhard Schlegel
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Adam T. Fiedler
- Department of Chemistry Marquette University 535 N. 14th St. Milwaukee WI 53233 USA
| | - Cláudio N. Verani
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| |
Collapse
|
25
|
Ji X, Yang D, Tong P, Li J, Wang B, Qu J. C–H Activation of Cp* Ligand Coordinated to Ruthenium Center: Synthesis and Reactivity of a Thiolate-Bridged Diruthenium Complex Featuring Fulvene-like Cp* Ligand. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoxiao Ji
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Dawei Yang
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Peng Tong
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jianzhe Li
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Baomin Wang
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jingping Qu
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- Key
Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
26
|
Ji X, Tong P, Yang D, Wang B, Zhao J, Li Y, Qu J. Synthesis, structural characterization and conversion of dinuclear iron-sulfur clusters containing the disulfide ligand: [Cp*Fe(μ-η 2:η 2-bdt)(cis-μ-η 1:η 1-S 2)FeCp*], [Cp*Fe(μ-S(C 6H 4S 2))(cis-μ-η 1:η 1-S 2)FeCp*], and [{Cp*Fe(bdt)} 2(trans-μ-η 1:η 1-S 2)]. Dalton Trans 2017; 46:3820-3824. [PMID: 28265627 DOI: 10.1039/c7dt00450h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of [Cp*Fe(μ-η2:η4-bdt)FeCp*] (1, Cp* = η5-C5Me5, bdt = benzene-1,2-dithiolate) with 1/4 equiv. of elemental sulfur (S8) gave a dinuclear iron-sulfur cluster [Cp*Fe(μ-η2:η2-bdt)(cis-μ-η1:η1-S2)FeCp*] (2), which contains a cis-1,2-disulfide ligand. When complex 2 further interacted with 1/8 equiv. of S8, another sulfur atom inserted into an Fe-S bond to give a rare product [Cp*Fe(μ-S(C6H4S2))(cis-μ-η1:η1-S2)FeCp*] (3). Unexpectedly, a trans-1,2 disulfide-bridged diiron complex [{Cp*Fe(bdt)}2(trans-μ-η1:η1-S2)] (4) was isolated from the reaction of complex 1 with 1/2 equiv. of S8, which represents a structural isomer of [2Fe-2S] ferredoxin-type clusters. In addition, cis-1,2-disulfide-bridged complex 3 can slowly convert into trans-1,2-disulfide-bridged complex 4 and the complex [Cp*Fe(μ-η2:η2-S2)(cis-μ-η1:η1-S2)FeCp*] (5) by self-assembly reaction at ambient temperature, which is evidenced by time-dependent 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Xiaoxiao Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Peng Tong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China. and Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|