A split β-lactamase sensor for the detection of DNA modification by cisplatin and ruthenium-based chemotherapeutic drugs.
J Inorg Biochem 2022;
236:111986. [PMID:
36084568 DOI:
10.1016/j.jinorgbio.2022.111986]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 12/15/2022]
Abstract
Here we present a split-enzyme sensor approach for the sequence-specific detection of metal-based drug adducts of DNA. Split β-lactamase reporters were constructed using domain A of the High Mobility Group Box 1 protein (HMGB1a) in conjunction with zinc finger DNA-binding domains. As a proof of concept, the sensors were characterized with the well-known drug cisplatin, which forms 1,2-intrastrand crosslinks with DNA that are recognized by HMGB1a. After promising results with cisplatin, five ruthenium-based drugs were studied, four of which produced significant signal over background. These results highlight the utility of our approach for rapid screening of novel metal-based chemotherapeutic drug candidates and provide evidence that HMGB1a likely binds to DNA adducts formed by NAMI-A (imidazolium trans-tetrachlorodimethylsulfoxideimidazoleruthenate(III)), KP1019 (indazolium trans-tetrachlorodiindazoleruthenate(III)), KP418 (imidazolium trans-tetrachlorodiimidazoleruthenate(III)), and RAPTA-C (dichloro(η6-p-cymene)(1,3,5-triaza-7-phosphaadamantane)ruthenium(II)). These results thus imply a potential biologically relevant mode of action for the ruthenium-based drugs investigated herein.
Collapse