1
|
Lavrova MA, Verzun SA, Mishurinskiy SA, Sirotin MA, Bykova SK, Gontcharenko VE, Mariasina SS, Korshunov VM, Taydakov IV, Belousov YA, Dolzhenko VD. Fine-Tuning of the Optical and Electrochemical Properties of Ruthenium(II) Complexes with 2-Arylbenzimidazoles and 4,4'-Dimethoxycarbonyl-2,2'-bipyridine. Molecules 2023; 28:6541. [PMID: 37764316 PMCID: PMC10536653 DOI: 10.3390/molecules28186541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A series of cyclometalated complexes of ruthenium (II) with four different substituents in the aryl fragment of benzimidazole was synthesized in order to study the effect of substituent donation on the electronic structure of the substances. The resulting complexes were studied using X-ray diffraction, NMR spectroscopy, MALDI mass spectrometry, electron absorption spectroscopy, luminescence spectroscopy, and cyclic voltammetry as well as DFT/TDDFT was also used to interpret the results. All the complexes have intense absorption in the range of up to 700 nm, the triplet nature of the excited state was confirmed by measurement of luminescence decay. With an increase in substituent donation, a red shift of the absorption and emission bands occurs, and the lifetime of the excited state and the redox potential of the complex decrease. The combination of these properties shows that the complexes are excellent dyes and can be used as photosensitizers.
Collapse
Affiliation(s)
- Maria A. Lavrova
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
| | - Stepan A. Verzun
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
| | - Sergey A. Mishurinskiy
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
| | - Maxim A. Sirotin
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
- N.N. Semenov Federal Research Center for Chemical Physics, Kosygina Street 4, 119991 Moscow, Russia
| | - Sofya K. Bykova
- Higher Chemical College of RAS, Mendeleev University of Chemical Technology, Miusskaya Square, 9, 125047 Moscow, Russia;
| | - Victoria E. Gontcharenko
- Faculty of Chemistry, National Research University Higher School of Economics, 20 Miasnitskaya Street, 101000 Moscow, Russia;
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.K.); (I.V.T.)
| | - Sofia S. Mariasina
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vladislav M. Korshunov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.K.); (I.V.T.)
- Faculty of Fundamental Sciences, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Ilya V. Taydakov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.K.); (I.V.T.)
- Academic Department of Innovational Materials and Technologies Chemistry, G.V. Plekhanov Russian University of Economics, 36 Stremyannoy per., 117997 Moscow, Russia
| | - Yury A. Belousov
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.K.); (I.V.T.)
| | - Vladimir D. Dolzhenko
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
2
|
Oladipupo OE, Prescott MC, Blevins ER, Gray JL, Cameron CG, Qu F, Ward NA, Pierce AL, Collinson ER, Hall JF, Park S, Kim Y, McFarland SA, Fedin I, Papish ET. Ruthenium Complexes with Protic Ligands: Influence of the Position of OH Groups and π Expansion on Luminescence and Photocytotoxicity. Int J Mol Sci 2023; 24:ijms24065980. [PMID: 36983054 PMCID: PMC10053956 DOI: 10.3390/ijms24065980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Protic ruthenium complexes using the dihydroxybipyridine (dhbp) ligand combined with a spectator ligand (N,N = bpy, phen, dop, Bphen) have been studied for their potential activity vs. cancer cells and their photophysical luminescent properties. These complexes vary in the extent of π expansion and the use of proximal (6,6'-dhbp) or distal (4,4'-dhbp) hydroxy groups. Eight complexes are studied herein as the acidic (OH bearing) form, [(N,N)2Ru(n,n'-dhbp)]Cl2, or as the doubly deprotonated (O- bearing) form. Thus, the presence of these two protonation states gives 16 complexes that have been isolated and studied. Complex 7A, [(dop)2Ru(4,4'-dhbp)]Cl2, has been recently synthesized and characterized spectroscopically and by X-ray crystallography. The deprotonated forms of three complexes are also reported herein for the first time. The other complexes studied have been synthesized previously. Three complexes are light-activated and exhibit photocytotoxicity. The log(Do/w) values of the complexes are used herein to correlate photocytotoxicity with improved cellular uptake. For Ru complexes 1-4 bearing the 6,6'-dhbp ligand, photoluminescence studies (all in deaerated acetonitrile) have revealed that steric strain leads to photodissociation which tends to reduce photoluminescent lifetimes and quantum yields in both protonation states. For Ru complexes 5-8 bearing the 4,4'-dhbp ligand, the deprotonated Ru complexes (5B-8B) have low photoluminescent lifetimes and quantum yields due to quenching that is proposed to involve the 3LLCT excited state and charge transfer from the [O2-bpy]2- ligand to the N,N spectator ligand. The protonated OH bearing 4,4'-dhbp Ru complexes (5A-8A) have long luminescence lifetimes which increase with increasing π expansion on the N,N spectator ligand. The Bphen complex, 8A, has the longest lifetime of the series at 3.45 μs and a photoluminescence quantum yield of 18.7%. This Ru complex also exhibits the best photocytotoxicity of the series. A long luminescence lifetime is correlated with greater singlet oxygen quantum yields because the triplet excited state is presumably long-lived enough to interact with 3O2 to yield 1O2.
Collapse
Affiliation(s)
- Olaitan E Oladipupo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Meredith C Prescott
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Emily R Blevins
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jessica L Gray
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, The University of Texas Arlington, Arlington, TX 76019, USA
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Nicholas A Ward
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Abigail L Pierce
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Elizabeth R Collinson
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - James Fletcher Hall
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Seungjo Park
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, The University of Texas Arlington, Arlington, TX 76019, USA
| | - Igor Fedin
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Elizabeth T Papish
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
3
|
Sun Y, Das S, Brown SR, Blevins ER, Qu F, Ward NA, Gregory SA, Boudreaux CM, Kim Y, Papish ET. Ruthenium pincer complexes for light activated toxicity: Lipophilic groups enhance toxicity. J Inorg Biochem 2023; 240:112110. [PMID: 36596265 PMCID: PMC10231263 DOI: 10.1016/j.jinorgbio.2022.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Nine ruthenium CNC pincer complexes (1-9) were tested for anticancer activity in cell culture under both dark and light conditions. These complexes included varied CNC pincer ligands including OH, OMe, or Me substituents on the pyridyl ring and wingtip N-heterocyclic carbene (NHC) groups which varied as methyl (Me), phenyl (Ph), mesityl (Mes), and 2,6-diisopropylphenyl (Dipp). The supporting ligands included acetonitrile, Cl, and 2,2'-bipyridine (bpy) donors. The synthesis of complexes 8 and 9 is described herein and are fully characterized by spectroscopic (1H NMR, IR, UV-Vis, MS) and analytical techniques. Single crystal X-ray diffraction results are reported herein for 8 and 9. The other complexes (1-7) are reported elsewhere. The four most lipophilic ruthenium complexes (6, 7, 8, and 9) showed the best activity vs. MCF7 cancer cells with complexes 6 and 9 showing cytotoxicity and complex 7 and 8 showing light activated photocytotoxicity. The distribution of these compounds between octanol and water is reported as log(Do/w) values, and increasing log(Do/w) values correlate roughly with improved activity vs. cancer cells. Overall, lipophilic wingtip groups (e.g. Ph, Mes, Dipp) on the NHC ring and a lower cationic charge (1+ vs. 2+) appears to be beneficial for improved anticancer activity.
Collapse
Affiliation(s)
- Yifei Sun
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA
| | - Sanjit Das
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Spenser R Brown
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA
| | - Emily R Blevins
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Fengrui Qu
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA
| | - Nicholas A Ward
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Shawn Aiden Gregory
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Chance M Boudreaux
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Yonghyun Kim
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA.
| | - Elizabeth T Papish
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
4
|
Second and third-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumour activity. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Synthesis, Antibiofilm activity and molecular docking study of new water-soluble copper(II)-pincer complexes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Oladipupo O, Brown SR, Lamb RW, Gray JL, Cameron CG, DeRegnaucourt AR, Ward NA, Hall JF, Xu Y, Petersen CM, Qu F, Shrestha AB, Thompson MK, Bonizzoni M, Webster CE, McFarland SA, Kim Y, Papish ET. Light-responsive and Protic Ruthenium Compounds Bearing Bathophenanthroline and Dihydroxybipyridine Ligands Achieve Nanomolar Toxicity towards Breast Cancer Cells. Photochem Photobiol 2022; 98:102-116. [PMID: 34411308 PMCID: PMC8810589 DOI: 10.1111/php.13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
We report new ruthenium complexes bearing the lipophilic bathophenanthroline (BPhen) ligand and dihydroxybipyridine (dhbp) ligands which differ in the placement of the OH groups ([(BPhen)2 Ru(n,n'-dhbp)]Cl2 with n = 6 and 4 in 1A and 2A , respectively). Full characterization data are reported for 1A and 2A and single crystal X-ray diffraction for 1A . Both 1A and 2A are diprotic acids. We have studied 1A , 1B , 2A , and 2B (B = deprotonated forms) by UV-vis spectroscopy and 1 photodissociates, but 2 is light stable. Luminescence studies reveal that the basic forms have lower energy 3 MLCT states relative to the acidic forms. Complexes 1A and 2A produce singlet oxygen with quantum yields of 0.05 and 0.68, respectively, in acetonitrile. Complexes 1 and 2 are both photocytotoxic toward breast cancer cells, with complex 2 showing EC50 light values as low as 0.50 μM with PI values as high as >200 vs. MCF7. Computational studies were used to predict the energies of the 3 MLCT and 3 MC states. An inaccessible 3 MC state for 2B suggests a rationale for why photodissociation does not occur with the 4,4'-dhbp ligand. Low dark toxicity combined with an accessible 3 MLCT state for 1 O2 generation explains the excellent photocytotoxicity of 2.
Collapse
Affiliation(s)
- Olaitan Oladipupo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Spenser R. Brown
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Robert W. Lamb
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Jessica L. Gray
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX 76019, USA
| | - Alexa R. DeRegnaucourt
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Nicholas A. Ward
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - James Fletcher Hall
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yifei Xu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Courtney M. Petersen
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ambar B. Shrestha
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Matthew K. Thompson
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Marco Bonizzoni
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX 76019, USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Elizabeth T. Papish
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
7
|
Wu S, Wu Z, Ge Q, Zheng X, Yang Z. Antitumor activity of tridentate pincer and related metal complexes. Org Biomol Chem 2021; 19:5254-5273. [PMID: 34059868 DOI: 10.1039/d1ob00577d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pincer complexes featuring tunable tridentate ligand frameworks are one of the most actively studied classes of metal-based complexes. Currently, growing attention is devoted to the cytotoxicity of pincer and related metal complexes. The antiproliferative activity of numerous pincer complexes has been reported. Pincer tridentate ligand scaffolds show different coordination modes and offer multiple options for directed structural modifications. This review summarizes the significant progress in the research studies of the antitumor activity of pincer and related platinum(ii), gold(iii), palladium(ii), copper(ii), iron(iii), ruthenium(ii), nickel(ii) and some other metal complexes, in order to provide a reference for designing novel metal coordination drug candidates with promising antitumor activity.
Collapse
Affiliation(s)
- Shulei Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zaoduan Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Xing Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
8
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Io K, Ng S, Yeung C, Wong C. Synthesis, Spectroscopic and Computational Studies of Rhodium(III) Complexes Bearing N‐Heterocyclic Carbene‐Based C
^
N
^
C Pincer Ligand and Bipyridine/Terpyridine. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai‐Wa Io
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR
| | - Sze‐Wing Ng
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR
| | - Chi‐Fung Yeung
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR
| | - Chun‐Yuen Wong
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR
| |
Collapse
|
10
|
Tabrizi L, Zouchoune B, Zaiter A. Theoretical and experimental study of gold(III), palladium(II), and platinum (II) complexes with 3-((4-nitrophenyl)thio)phenylcyanamide and 2,2′-bipyridine ligands: Cytotoxic activity and interaction with 9-methylguanine. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Park S, Gray JL, Altman SD, Hairston AR, Beswick BT, Kim Y, Papish ET. Cellular uptake of protic ruthenium complexes is influenced by pH dependent passive diffusion and energy dependent efflux. J Inorg Biochem 2019; 203:110922. [PMID: 31775072 DOI: 10.1016/j.jinorgbio.2019.110922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 01/01/2023]
Abstract
The lipophilic vs. hydrophilic properties of three protic ruthenium compounds were studied as a function of pH. Specifically, we measured Log(Do/w) values for [(N,N)2Ru(6,6'-dhbp)]2+ complexes (where N,N = 2,2'-bipyridine (1A), 1,10-phenanthroline (2A), 2,3-dihydro-[1,4]dioxino[2,3-f][1,10]phenanthroline (3A) and 6,6'-dhbp is the diprotic 6,6'-dihydroxy-2,2'-bipyridine ligand) from pH 4.0 to 8.0. This study allowed us to demonstrate that as the ligand is deprotonated at higher pH values the resulting neutral charge on the complex improves its lipophilic properties. Thus, improved uptake by passive diffusion is expected with protic ligands on Ru(II). Furthermore, cellular studies have demonstrated that passive diffusion is the dominant pathway for cellular uptake. However, metabolic inhibition has also shown that energy dependent efflux reduces the amount of the ruthenium complex (as measured by mean fluorescence intensity) in the cells. These compounds have been shown by fluorescence microscopy to accumulate in the nuclei of cancer cells (MCF7, MDA-MB-231, and HeLa). Taken together, this data shows that uptake is required for toxicity but uptake alone is not sufficient. The greatest light activated toxicity appears to occur in breast cancer cell lines with relatively moderate uptake (MCF7 and MDA-MB-231) rather than the cell line with the greatest uptake of complex 3A (normal breast cell line MCF-10A).
Collapse
Affiliation(s)
- Seungjo Park
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA
| | - Jessica L Gray
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Sarah D Altman
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Angela R Hairston
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Brianna T Beswick
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA
| | - Yonghyun Kim
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA.
| | - Elizabeth T Papish
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
12
|
Karges J, Heinemann F, Maschietto F, Patra M, Blacque O, Ciofini I, Spingler B, Gasser G. A Ru(II) polypyridyl complex bearing aldehyde functions as a versatile synthetic precursor for long-wavelength absorbing photodynamic therapy photosensitizers. Bioorg Med Chem 2019; 27:2666-2675. [PMID: 31103403 DOI: 10.1016/j.bmc.2019.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
The use of Photodynamic Therapy (PDT) for the treatment of several kinds of cancer as well as bacterial, fungal or viral infections has received increasing attention during the last decade. However, the currently clinically approved photosensitizers (PSs) have several drawbacks, including photobleaching, slow clearance from the organism and poor water solubility. To overcome these shortcomings, many efforts have been made in the development of new types of PSs, such as Ru(II) polypyridyl complexes. Nevertheless, most studied Ru(II) polypyridyl complexes have a low absorbance in the spectral therapeutic window. In this work, we show that, by carefully selecting substituents on the polypyridyl complex, it is possible to prepare a complex absorbing at a much higher wavelength. Specifically, we report on the synthesis as well as in-depth experimental and theoretical characterisation of a Ru(II) polypyridyl complex (complex 3) combining a shift in absorbance towards the spectral therapeutic window with a high 1O2 production. To overcome the absence or poor selectivity of most approved PSs into targeted cells/bacteria, they can be linked to targeting moieties. In this line, compound 3 was designed with reactive aldehyde groups, which can be used as a highly versatile synthetic precursor for further conjugation. As a proof of concept, 3 was reacted with benzylamine and the stability of the resulting conjugate 4 was investigated in DMSO, PBS and cell media. 4 showed an impressive ability to act as a PDT PS with no measurable dark cytotoxicity and photocytotoxicity in the low micromolar range against cancerous HeLa cells from 450 nm up to 540 nm.
Collapse
Affiliation(s)
- Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Franz Heinemann
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Federica Maschietto
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, 75005 Paris, France
| | - Malay Patra
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, 75005 Paris, France
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
13
|
Abyar F, Tabrizi L. Experimental and theoretical investigations of novel oxidovanadium(IV) juglone complex: DNA/HSA interaction and cytotoxic activity. J Biomol Struct Dyn 2019; 38:474-487. [PMID: 30831056 DOI: 10.1080/07391102.2019.1580221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new oxidovanadium(IV) complex VO(L)(Jug) (HL = 5-methoxy-1,3-bis (1-methyl-1H-benzo[d]imidazol-2-yl)benzene, Jug = juglone) was synthesized and characterized. Interactions of the V(IV) complex with calf thymus DNA (CT DNA) and human serum albumin were studied using different techniques such as UV-vis and fluorescence emission spectroscopy. The experimental results were confirmed by the molecular docking study. The oxidovanadium(IV) complex can efficiently cleave pUC19 DNA in the presence of Hydrogen peroxide. Also, the in vitro cytotoxicity properties of the oxidovanadium(IV) complex was evaluated against MCF-7, HPG-2 and HT-29 cancer cell lines and HEK293 non-malignant fibroblasts were evaluated and compared with free ligands, VOSO4 and cisplatin as reference drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Abyar
- Department of Chemical Engineering, Faculty of Engineering, Ardakan University, Ardakan, Iran
| | - Leila Tabrizi
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
14
|
Transition metal complexes based aptamers as optical diagnostic tools for disease proteins and biomolecules. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Tabrizi L, Zouchoune B, Zaiter A. Experimental and theoretical investigation of cyclometallated platinum(ii) complex containing adamantanemethylcyanamide and 1,4-naphthoquinone derivative as ligands: synthesis, characterization, interacting with guanine and cytotoxic activity. RSC Adv 2018; 9:287-300. [PMID: 35521610 PMCID: PMC9059274 DOI: 10.1039/c8ra08739c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023] Open
Abstract
A new cyclometallated platinum(ii) complex with 1-adamantanemethylcyanamide (1-ADpcydH) and 2-[amino(2-phenylpyridine)]-1,4-naphthoquinone (1,4-NQ) ligands with the formula cis-Pt(1,4-NQ)(1-ADpcyd)(H2O) was synthesized and fully characterized. Cellular uptake, DNA platination, and cytotoxicity against human MCF-7 breast, HepG-2 liver hepatocellular carcinoma, and HT-29 colon cancer cell lines were evaluated. The interaction of guanine (G) with cis-Pt(1,4-NQ)(1-ADpcyd)(H2O) was studied by 195Pt NMR and mass spectroscopy. Furthermore, DFT calculations were performed on the complexes cis-Pt(1,4-NQ)(1-ADpcyd)(H2O) 1 and cis-Pt(1,4-NQ)(1-ADpcyd)(G) 2 using the BP86-D and B3LYP functionals, in order to gain deeper insights into the molecular and electronic structures. Decomposition energy analysis gave a clear understanding of the bonding within both complexes, showing that the interactions were governed by two-third ionic and one-third covalent characters, which were stronger between the guanine and the Pt(ii) center than those between water and the Pt(ii). A new cyclometallated platinum(ii) complex was synthesized and its characterization, interaction with guanine, and cytotoxic activity were investigated by experiment and theoretical calculations.![]()
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland Galway University Road Galway Ireland H91 TK33
| | - Bachir Zouchoune
- Laboratoire de Chimie appliquée et Technologie des Matériaux, Université Larbi Ben M'Hidi - Oum El Bouaghi 04000 Oum El Bouaghi Algeria .,Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université Constantine (Mentouri) 25000 Constantine Algeria
| | - Abdallah Zaiter
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université Constantine (Mentouri) 25000 Constantine Algeria
| |
Collapse
|
16
|
Liu J, Zhang C, Rees TW, Ke L, Ji L, Chao H. Harnessing ruthenium(II) as photodynamic agents: Encouraging advances in cancer therapy. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Qu F, Martinez K, Arcidiacono AM, Park S, Zeller M, Schmehl RH, Paul JJ, Kim Y, Papish ET. Sterically demanding methoxy and methyl groups in ruthenium complexes lead to enhanced quantum yields for blue light triggered photodissociation. Dalton Trans 2018; 47:15685-15693. [DOI: 10.1039/c8dt03295e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ruthenium complexes exhibit enhanced photodissociation quantum yields due to bulky, weak donor ligands, illustrating the impact of electronics and sterics.
Collapse
Affiliation(s)
- Fengrui Qu
- Department of Chemistry & Biochemistry
- The University of Alabama
- Tuscaloosa
- USA
| | | | | | - Seungjo Park
- Department of Chemical and Biological Engineering
- The University of Alabama
- Tuscaloosa
- USA
| | | | | | - Jared J. Paul
- Department of Chemistry
- Villanova University
- Villanova
- USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering
- The University of Alabama
- Tuscaloosa
- USA
| | - Elizabeth T. Papish
- Department of Chemistry & Biochemistry
- The University of Alabama
- Tuscaloosa
- USA
| |
Collapse
|
18
|
Tabrizi L. Novel Cyclometalated Fe(II) Complex with NCN Pincer and BODIPY‐Appended 4'‐Ethynyl‐2,2':6',2”‐terpyridine as Mitochondria‐Targeted Photodynamic Anticancer Agents. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Leila Tabrizi
- School of ChemistryNational University of Ireland Galway, University Road Galway Ireland
- Department of ChemistryIsfahan University of Technology Isfahan Iran
| |
Collapse
|
19
|
Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 2017; 46:5771-5804. [PMID: 28654103 PMCID: PMC5624840 DOI: 10.1039/c7cs00195a] [Citation(s) in RCA: 741] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Collapse
Affiliation(s)
- Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Shao JY, Zhong YW. pH value-dependent electronic absorption and Ru(III/II) potential of bis-tridentate pincer ruthenium complexes. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Tabrizi L, Chiniforoshan H. Designing new iridium(iii) arene complexes of naphthoquinone derivatives as anticancer agents: a structure-activity relationship study. Dalton Trans 2017; 46:2339-2349. [PMID: 28138683 DOI: 10.1039/c6dt04339a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A series of iridium(iii) arene complexes of naphthoquinone derivatives of the formula [IrIII(η6-L1)(L2)(3,5-(NO2)2pcyd)](PF6) (L1 = p-methylphenyl)ethynylferrocene; L2 = Lap: lapachol, 1, Plum: plumbagin, 2, Law: lawsone, 3, and Jug: juglone, 4; 3,5-(NO2)2pcyd = 3,5-dinitrophenylcyanamide) have been synthesized and investigated for their suitability as potential anticancer drugs. The DNA-binding interactions of the complexes with calf thymus DNA have been studied by absorption, emission, and viscosity measurements. Their cytotoxicity against the cancer cell lines including colon adenocarcinoma (HT-29), liver hepatocellular carcinoma (HepG-2), breast (MCF-7), colon carcinoma (HCT-8), and ovary (A2780) is reported. Remarkably, almost all complexes exhibit significant cytotoxic effects towards HepG-2, MCF-7, and HCT-8 cancer cell lines and complex 1 emerged as the most cytotoxic derivative in comparison with other complexes. The complexes 1-4 increase the production of reactive oxygen species (ROS) in MCF-7 cells. The new compounds also inhibit the enzyme thioredoxin reductase activity at nanomolar concentrations. Furthermore, the complexes induce major levels of cancer cell death by apoptosis that is in correlation with activity in cytotoxicity studies.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland. and Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Chiniforoshan
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
22
|
Ouyang M, Zeng L, Qiu K, Chen Y, Ji L, Chao H. Cyclometalated IrIIIComplexes as Mitochondria-Targeted Photodynamic Anticancer Agents. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601129] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Miao Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; 510275 Guangzhou China
- School of Chemistry and Bioengineering; Hechi University; 546300 Yizhou China
| | - Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; 510275 Guangzhou China
| | - Kangqiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; 510275 Guangzhou China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; 510275 Guangzhou China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; 510275 Guangzhou China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; 510275 Guangzhou China
| |
Collapse
|
23
|
Tabrizi L, Chiniforoshan H. The cytotoxicity and mechanism of action of new multinuclear Scaffold AuIII, PdIIpincer complexes containing a bis(diphenylphosphino) ferrocene/non-ferrocene ligand. Dalton Trans 2017; 46:14164-14173. [DOI: 10.1039/c7dt02887c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
New multinuclear gold(iii), palladium(ii) pincer complexes containing bis(diphenylphosphino) ferrocene/non-ferrocene ligands were investigated for their cytotoxicity and mechanism of action.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry
- National University of Ireland
- Galway
- Galway
- Ireland
| | | |
Collapse
|
24
|
Tabrizi L, Chiniforoshan H. Synthesis and C–H activation reactions of cyclometalated copper(i) complexes with NCN pincer and 1,3,5-triaza-7-phosphaadamantane derivatives: in vitro antimicrobial and cytotoxic activity. NEW J CHEM 2017. [DOI: 10.1039/c7nj02500a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel cyclometalated copper(i) complexes with NCN pincer and N-aryl-1,3,5-triaza-7-phosphaadamantane ligands have been synthesized by C–H activation and studied for in vitro antimicrobial and cytotoxic activity.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
- Department of Chemistry
| | | |
Collapse
|
25
|
Tabrizi L, Chiniforoshan H. New cyclometalated Ir(iii) complexes with NCN pincer and meso-phenylcyanamide BODIPY ligands as efficient photodynamic therapy agents. RSC Adv 2017. [DOI: 10.1039/c7ra05579j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new class of cyclometalated iridium(iii) with NCN pincer andmeso-phenylcyanamide BODIPY ligands has been synthesized and studied for photodynamic therapy.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry
- National University of Ireland, Galway
- Galway
- Ireland
- Department of Chemistry
| | | |
Collapse
|
26
|
Tabrizi L. The discovery of half-sandwich iridium complexes containing lidocaine and (pyren-1-yl)ethynyl derivatives of phenylcyanamide ligands for photodynamic therapy. Dalton Trans 2017; 46:7242-7252. [DOI: 10.1039/c7dt01091e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The new design of two cyclopentadienyl iridium(iii) complexes with (pyren-1-yl)ethynyl derivatives of phenylcyanamide and lidocaine ligands, have been studied for photodynamic therapy.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
- Department of Chemistry
| |
Collapse
|