1
|
Shaya J, Aloum L, Lu CS, Corridon PR, Aoudi A, Shunnar A, Alefishat E, Petroianu G. Theoretical Study of Hydroxylation of α- and β-Pinene by a Cytochrome P450 Monooxygenase Model. Int J Mol Sci 2023; 24:ijms24065150. [PMID: 36982225 PMCID: PMC10048887 DOI: 10.3390/ijms24065150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/30/2023] Open
Abstract
Previous studies on biocatalytic transformations of pinenes by cytochrome P450 (CYP) enzymes reveal the formation of different oxygenated products from a single substrate due to the multistate reactivity of CYP and the many reactive sites in the pinene scaffold. Up until now, the detailed mechanism of these biocatalytic transformations of pinenes have not been reported. Hereby, we report a systematic theoretical study of the plausible hydrogen abstraction and hydroxylation reactions of α- and β-pinenes by CYP using the density functional theory (DFT) method. All DFT calculations in this study were based on B3LYP/LAN computational methodology using the Gaussian09 software. We used the B3LYP functional with corrections for dispersive forces, BSSE, and anharmonicity to study the mechanism and thermodynamic properties of these reactions using a bare model (without CYP) and a pinene-CYP model. According to the potential energy surface and Boltzmann distribution for radical conformers, the major reaction products of CYP-catalyzed hydrogen abstraction from β-pinene are the doublet trans (53.4%) and doublet cis (46.1%) radical conformer at delta site. The formation of doublet cis/trans hydroxylated products released a total Gibbs free energy of about 48 kcal/mol. As for alpha pinene, the most stable radicals were trans-doublet (86.4%) and cis-doublet (13.6%) at epsilon sites, and their hydroxylation products released a total of ~50 kcal/mol Gibbs free energy. Our results highlight the likely C-H abstraction and oxygen rebounding sites accounting for the multi-state of CYP (doublet, quartet, and sextet spin states) and the formation of different conformers due to the presence of cis/trans allylic hydrogen in α-pinene and β-pinene molecules.
Collapse
Affiliation(s)
- Janah Shaya
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Chung-Shin Lu
- Department of General Education, National Taichung University of Science and Technology, Taichung 404, Taiwan, China
| | - Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Abdulrahman Aoudi
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Abeer Shunnar
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11972, Jordan
| | - Georg Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
2
|
Wang J, Liu J, Gisriel CJ, Wu S, Maschietto F, Flesher DA, Lolis E, Lisi GP, Brudvig GW, Xiong Y, Batista VS. How to correct relative voxel scale factors for calculations of vector-difference Fourier maps in cryo-EM. J Struct Biol 2022; 214:107902. [PMID: 36202310 DOI: 10.1016/j.jsb.2022.107902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
The atomic coordinates derived from cryo-electron microscopy (cryo-EM) maps can be inaccurate when the voxel scaling factors are not properly calibrated. Here, we describe a method for correcting relative voxel scaling factors between pairs of cryo-EM maps for the same or similar structures that are expanded or contracted relative to each other. We find that the correction of scaling factors reduces the amplitude differences of Fourier-inverted structure factors from voxel-rescaled maps by up to 20-30%, as shown by two cryo-EM maps of the SARS-CoV-2 spike protein measured at pH 4.0 and pH 8.0. This allows for the calculation of the difference map after properly scaling, revealing differences between the two structures for individual amino acid residues. Unexpectedly, the analysis uncovers two previously overlooked differences of amino acid residues in structures and their local structural changes. Furthermore, we demonstrate the method as applied to two cryo-EM maps of monomeric apo-photosystem II from the cyanobacteria Synechocystis sp. PCC 6803 and Thermosynechococcus elongatus. The resulting difference maps reveal many changes in the peripheral transmembrane PsbX subunit between the two species.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA.
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA
| | | | - Shenping Wu
- Department of Pharmacology, Yale University, New Haven, CT 06520-8066, USA
| | | | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA
| | - Elias Lolis
- Department of Pharmacology, Yale University, New Haven, CT 06520-8066, USA
| | - George P Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA; Department of Chemistry, Yale University, New Haven, CT 06511-8499, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06511-8499, USA
| |
Collapse
|
3
|
Tasharofi H, Asli MD, Jamaat PR. Ionic bond in hydrogen transferring of the ferrous and/or ferric human/mouse verdoheme oxygenase. J Mol Model 2021; 27:172. [PMID: 34013462 DOI: 10.1007/s00894-021-04762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Formation of five coordinated ferric (ferrous) verdoheme oxygenase complexes have been investigated at ωB97X-D/6-31G(d) level of theory. This process was carried out by adsorption of imidazole and human/mouse verdoheme oxygenase (VO) compounds. Global reactivity indexes show electrophile and nucleophile roles of the VO complexes and Imidazole, respectively. This result confirms their interaction, molecular electrostatic potential (MEP) maps, and low HOMOFRVMO-LUMOImidazole gap. These interactions can cause in adsorption and five coordinated of the VO complexes. More negative value (-64.3 kJ mol-1) of adsorption energy (Eads) in the FRVMO complex shows better adsorption strength and stable configuration. Significant point of this interaction is hydrogen transfer from imidazole to the nearest oxygen of the VO complexes; this issue is approved using quantum theory of atom in molecule (QTAIM) and natural bond orbital (NBO) analysis. QTAIM calculations confirm ionic bonding between the transferred hydrogen and the oxygen atom of the VO. The 312.2-kcal mol-1 s order stabilization energies in this complex are confirmation for strong donation and better formation of five coordinated complex in electron view point.
Collapse
Affiliation(s)
- Hamideh Tasharofi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Daghighi Asli
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
4
|
Sarabi S, Jamaat PR, Djahaniani H. Theoretical kinetics and thermodynamics study: Peripheral substituent effects on the hydrolysis of verdoheme. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The heme oxygenase (HO) enzyme is a free heme protein that binds to heme in the body. Heme acts as both a cofactor and a substrate in this enzyme. The catabolism of heme into biliverdin, monoxide carbon, and free-iron, catalyzed by heme oxygenase via three consecutive oxygenation steps, in which the heme group functions as the prosthetic group as well as the substrate. Investigations of the reactions of the peripheral substituent on the heme ring with 5-oxaporphyrin iron complexes (verdohemes) have been assumed to provide models and largely unknown for the primary step in the hydrolysis of verdohemes. In this work, a theoretical kinetics and thermodynamics study of the degradation reactions of verdohemes was performed, and calculations show that the [Formula: see text] in the hydrolysis of verdohemes with non-peripheral substituents is more negative than hydrolysis of verdohemes with peripheral substituents. In other words, the hydrolysis of verdohemes with non-peripheral substituents is more energy-efficient than verdohemes with a peripheral substituents. Equilibrium constant calculations show that hydrolysis of verdohemes with non-peripheral substituents is much faster than that of verdohemes with peripheral substituents, which is due to a more convenient nucleophilic attack on the cationic ring than the anionic ring. To acquire a good molecular understanding, peripheral substituent effects on the hydrolysis of verdoheme’s inhibitory role was studied using the DFT method.
Collapse
Affiliation(s)
- Shahriyar Sarabi
- Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Hoorieh Djahaniani
- Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Yuan C, Zhang Y, Tan H, Li X, Chen G, Jia Z. ONIOM investigations of the heme degradation mechanism by MhuD: the critical function of heme ruffling. Phys Chem Chem Phys 2020; 22:8817-8826. [DOI: 10.1039/c9cp05868k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique ruffling conformation of hydroxyheme in MhuD inhibits its “on-site” monooxygenation but induces “remote-site” dioxygenation.
Collapse
Affiliation(s)
- Chang Yuan
- College of Chemistry
- Key Laboratories of Theoretical and Computational Photochemistry
- Ministry of Education
- Beijing Normal University
- Beijing
| | - Ying Zhang
- College of Chemistry
- Key Laboratories of Theoretical and Computational Photochemistry
- Ministry of Education
- Beijing Normal University
- Beijing
| | - Hongwei Tan
- College of Chemistry
- Key Laboratories of Theoretical and Computational Photochemistry
- Ministry of Education
- Beijing Normal University
- Beijing
| | - Xichen Li
- College of Chemistry
- Key Laboratories of Theoretical and Computational Photochemistry
- Ministry of Education
- Beijing Normal University
- Beijing
| | - Guangju Chen
- College of Chemistry
- Key Laboratories of Theoretical and Computational Photochemistry
- Ministry of Education
- Beijing Normal University
- Beijing
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences
- Queen's University
- Kingston
- Ontario
- Canada
| |
Collapse
|
6
|
|
7
|
Cao L, Ryde U. On the Difference Between Additive and Subtractive QM/MM Calculations. Front Chem 2018; 6:89. [PMID: 29666794 PMCID: PMC5891596 DOI: 10.3389/fchem.2018.00089] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/14/2018] [Indexed: 12/28/2022] Open
Abstract
The combined quantum mechanical (QM) and molecular mechanical (MM) approach (QM/MM) is a popular method to study reactions in biochemical macromolecules. Even if the general procedure of using QM for a small, but interesting part of the system and MM for the rest is common to all approaches, the details of the implementations vary extensively, especially the treatment of the interface between the two systems. For example, QM/MM can use either additive or subtractive schemes, of which the former is often said to be preferable, although the two schemes are often mixed up with mechanical and electrostatic embedding. In this article, we clarify the similarities and differences of the two approaches. We show that inherently, the two approaches should be identical and in practice require the same sets of parameters. However, the subtractive scheme provides an opportunity to correct errors introduced by the truncation of the QM system, i.e., the link atoms, but such corrections require additional MM parameters for the QM system. We describe and test three types of link-atom correction, viz. for van der Waals, electrostatic, and bonded interactions. The calculations show that electrostatic and bonded link-atom corrections often give rise to problems in the geometries and energies. The van der Waals link-atom corrections are quite small and give results similar to a pure additive QM/MM scheme. Therefore, both approaches can be recommended.
Collapse
Affiliation(s)
- Lili Cao
- Department of Theoretical Chemistry, Chemical Centre, Lund University, Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Chemical Centre, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Alavi FS, Gheidi M, Zahedi M, Safari N, Ryde U. A novel mechanism of heme degradation to biliverdin studied by QM/MM and QM calculations. Dalton Trans 2018; 47:8283-8291. [DOI: 10.1039/c8dt00064f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heme degradation by heme oxygenase enzymes is important for maintaining iron homeostasis and prevention of oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Sadat Alavi
- Department of Chemistry
- Faculty of Sciences
- Shahid Beheshti University
- Tehran
- Iran
| | - Mahin Gheidi
- Department of Chemistry
- Faculty of Sciences
- Shahid Beheshti University
- Tehran
- Iran
| | - Mansour Zahedi
- Department of Chemistry
- Faculty of Sciences
- Shahid Beheshti University
- Tehran
- Iran
| | - Nasser Safari
- Department of Chemistry
- Faculty of Sciences
- Shahid Beheshti University
- Tehran
- Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry
- Lund University
- Chemical Centre
- SE-221 00 Lund
- Sweden
| |
Collapse
|
9
|
Alavi FS, Zahedi M, Safari N, Ryde U. QM/MM Study of the Conversion of Oxophlorin into Verdoheme by Heme Oxygenase. J Phys Chem B 2017; 121:11427-11436. [PMID: 29090581 DOI: 10.1021/acs.jpcb.7b08332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme oxygenase is an enzyme that degrades heme, thereby recycling iron in most organisms, including humans. Pervious density functional theory (DFT) calculations have suggested that iron(III) hydroxyheme, an intermediate generated in the first step of heme degradation by heme oxygenase, is converted to iron(III) superoxo oxophlorin in the presence of dioxygen. In this article, we have studied the detailed mechanism of conversion of iron(III) superoxo oxophlorin to verdoheme by using combined quantum mechanics and molecular mechanics (QM/MM) calculations. The calculations employed the B3LYP method and the def2-QZVP basis set, considering dispersion effects with the DFT-D3 approach, obtaining accurate energies with large QM regions of almost 1000 atoms. The reaction was found to be exothermic by -35 kcal/mol, with a rate-determining barrier of 19 kcal/mol in the doublet state. The protein environment and especially water in the enzyme pocket significantly affects the reaction by decreasing the reaction activation energies and changing the structures by providing strategic hydrogen bonds.
Collapse
Affiliation(s)
- Fatemeh Sadat Alavi
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University , G.C., Evin, 19839-6313 Tehran, Iran
| | - Mansour Zahedi
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University , G.C., Evin, 19839-6313 Tehran, Iran
| | - Nasser Safari
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University , G.C., Evin, 19839-6313 Tehran, Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University , Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|