1
|
Boukid F, Rosell CM, Rosene S, Bover-Cid S, Castellari M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:6390-6420. [PMID: 33775185 DOI: 10.1080/10408398.2021.1901649] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumer interest in protein rich diets is increasing, with more attention being paid to the protein source. Despite the occurrence of animal proteins in the human diet, non-animal proteins are gaining popularity around the world due to their health benefits, environmental sustainability, and ethical merit. These sources of protein qualify for vegan, vegetarian, and flexitarian diets. Non-animal proteins are versatile, derived mainly from cereals, vegetables, pulses, algae (seaweed and microalgae), fungi, and bacteria. This review's intent is to analyze the current and future direction of research and innovation in non-animal proteins, and to elucidate the extent (limitations and opportunities) of their applications in food and beverage industries. Prior knowledge provided relevant information on protein features (processing, structure, and techno-functionality) with particular focus on those derived from soy and wheat. In the current food landscape, beyond conventionally used plant sources, other plant proteins are gaining traction as alternative ingredients to formulate animal-free foodstuffs (e.g., meat alternatives, beverages, baked products, snack foods, and others). Microbial proteins derived from fungi and algae are also food ingredients of interest due to their high protein quantity and quality, however there is no commercial food application for bacterial protein yet. In the future, key points to consider are the importance of strain/variety selection, advances in extraction technologies, toxicity assessment, and how this source can be used to create food products for personalized nutrition.
Collapse
Affiliation(s)
- Fatma Boukid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Sara Rosene
- General Mills, Golden Valley, Minnesota, USA
| | - Sara Bover-Cid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| |
Collapse
|
2
|
Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021; 10:foods10030600. [PMID: 33809143 PMCID: PMC7999387 DOI: 10.3390/foods10030600] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Meat analogue research and development focuses on the production of sustainable products that recreate conventional meat in its physical sensations (texture, appearance, taste, etc.) and nutritional aspects. Minced products, like burger patties and nuggets, muscle-type products, like chicken or steak-like cuts, and emulsion products, like Frankfurter and Mortadella type sausages, are the major categories of meat analogues. In this review, we discuss key ingredients for the production of these novel products, with special focus on protein sources, and underline the importance of ingredient functionality. Our observation is that structuring processes are optimized based on ingredients that were not originally designed for meat analogues applications. Therefore, mixing and blending different plant materials to obtain superior functionality is for now the common practice. We observed though that an alternative approach towards the use of ingredients such as flours, is gaining more interest. The emphasis, in this case, is on functionality towards use in meat analogues, rather than classical functionality such as purity and solubility. Another trend is the exploration of novel protein sources such as seaweed, algae and proteins produced via fermentation (cellular agriculture).
Collapse
|
3
|
Sarkar A, Dickinson E. Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.04.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Poon WCK, Brown AT, Direito SOL, Hodgson DJM, Le Nagard L, Lips A, MacPhee CE, Marenduzzo D, Royer JR, Silva AF, Thijssen JHJ, Titmuss S. Soft matter science and the COVID-19 pandemic. SOFT MATTER 2020; 16:8310-8324. [PMID: 32909024 DOI: 10.1039/d0sm01223h] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Much of the science underpinning the global response to the COVID-19 pandemic lies in the soft matter domain. Coronaviruses are composite particles with a core of nucleic acids complexed to proteins surrounded by a protein-studded lipid bilayer shell. A dominant route for transmission is via air-borne aerosols and droplets. Viral interaction with polymeric body fluids, particularly mucus, and cell membranes controls their infectivity, while their interaction with skin and artificial surfaces underpins cleaning and disinfection and the efficacy of masks and other personal protective equipment. The global response to COVID-19 has highlighted gaps in the soft matter knowledge base. We survey these gaps, especially as pertaining to the transmission of the disease, and suggest questions that can (and need to) be tackled, both in response to COVID-19 and to better prepare for future viral pandemics.
Collapse
Affiliation(s)
- Wilson C K Poon
- Edinburgh Complex Fluids Partnership (ECFP), SUPA and School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Aidan T Brown
- Edinburgh Complex Fluids Partnership (ECFP), SUPA and School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Susana O L Direito
- Edinburgh Complex Fluids Partnership (ECFP), SUPA and School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Daniel J M Hodgson
- Edinburgh Complex Fluids Partnership (ECFP), SUPA and School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Lucas Le Nagard
- Edinburgh Complex Fluids Partnership (ECFP), SUPA and School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Alex Lips
- Edinburgh Complex Fluids Partnership (ECFP), SUPA and School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Cait E MacPhee
- Edinburgh Complex Fluids Partnership (ECFP), SUPA and School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Davide Marenduzzo
- Edinburgh Complex Fluids Partnership (ECFP), SUPA and School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - John R Royer
- Edinburgh Complex Fluids Partnership (ECFP), SUPA and School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Andreia F Silva
- Edinburgh Complex Fluids Partnership (ECFP), SUPA and School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Job H J Thijssen
- Edinburgh Complex Fluids Partnership (ECFP), SUPA and School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Simon Titmuss
- Edinburgh Complex Fluids Partnership (ECFP), SUPA and School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| |
Collapse
|
5
|
Rutkevičius M, Allred S, Velev OD, Velikov KP. Stabilization of oil continuous emulsions with colloidal particles from water-insoluble plant proteins. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Glusac J, Davidesko-Vardi I, Isaschar-Ovdat S, Kukavica B, Fishman A. Gel-like emulsions stabilized by tyrosinase-crosslinked potato and zein proteins. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Sommer MR, Alison L, Minas C, Tervoort E, Rühs PA, Studart AR. 3D printing of concentrated emulsions into multiphase biocompatible soft materials. SOFT MATTER 2017; 13:1794-1803. [PMID: 28165099 DOI: 10.1039/c6sm02682f] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
3D printing via direct ink writing (DIW) is a versatile additive manufacturing approach applicable to a variety of materials ranging from ceramics over composites to hydrogels. Due to the mild processing conditions compared to other additive manufacturing methods, DIW enables the incorporation of sensitive compounds such as proteins or drugs into the printed structure. Although emulsified oil-in-water systems are commonly used vehicles for such compounds in biomedical, pharmaceutical, and cosmetic applications, printing of such emulsions into architectured soft materials has not been fully exploited and would open new possibilities for the controlled delivery of sensitive compounds. Here, we 3D print concentrated emulsions into soft materials, whose multiphase architecture allows for site-specific incorporation of both hydrophobic and hydrophilic compounds into the same structure. As a model ink, concentrated emulsions stabilized by chitosan-modified silica nanoparticles are studied, because they are sufficiently stable against coalescence during the centrifugation step needed to create a bridging network of droplets. The resulting ink is ideal for 3D printing as it displays high yield stress, storage modulus and elastic recovery, through the formation of networks of droplets as well as of gelled silica nanoparticles in the presence of chitosan. To demonstrate possible architectures, we print biocompatible soft materials with tunable hierarchical porosity containing an encapsulated hydrophobic compound positioned in specific locations of the structure. The proposed emulsion-based ink system offers great flexibility in terms of 3D shaping and local compositional control, and can potentially help address current challenges involving the delivery of incompatible compounds in biomedical applications.
Collapse
Affiliation(s)
- Marianne R Sommer
- Complex Materials, Department of Materials, Vladimir-Prelog-Weg 5, ETH Zurich, 8093 Zurich, Switzerland.
| | - Lauriane Alison
- Complex Materials, Department of Materials, Vladimir-Prelog-Weg 5, ETH Zurich, 8093 Zurich, Switzerland.
| | - Clara Minas
- Complex Materials, Department of Materials, Vladimir-Prelog-Weg 5, ETH Zurich, 8093 Zurich, Switzerland.
| | - Elena Tervoort
- Complex Materials, Department of Materials, Vladimir-Prelog-Weg 5, ETH Zurich, 8093 Zurich, Switzerland.
| | - Patrick A Rühs
- Complex Materials, Department of Materials, Vladimir-Prelog-Weg 5, ETH Zurich, 8093 Zurich, Switzerland.
| | - André R Studart
- Complex Materials, Department of Materials, Vladimir-Prelog-Weg 5, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
8
|
|