1
|
Perez-Estebanez M, Perales-Rondon JV, Hernandez S, Heras A, Colina A. Bidimensional Spectroelectrochemistry with Tunable Thin-Layer Thickness. Anal Chem 2024; 96:9927-9934. [PMID: 38814818 PMCID: PMC11190879 DOI: 10.1021/acs.analchem.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Bidimensional spectroelectrochemistry (Bidim-SEC) is an instrumental technique that provides operando UV/vis absorption information on electrochemical processes from two different points of view, using concomitantly a parallel and a normal optical configuration. The parallel configuration provides information about chemical species present in the diffusion layer, meanwhile the normal arrangement supplies information about changes occurring both in the diffusion layer and, mainly, on the electrode surface. The choice of a suitable cell to perform Bidim-SEC experiments is critical, especially while working under a thin-layer regime. So far, most of the proposed Bidim-SEC cells rely on the use of spacers to define the thin-layer thickness, which leads to working with constant thickness values. Herein, we propose a novel Bidim-SEC cell that enables easy-to-use micrometric control of the thin-layer thickness using a piezoelectric positioner. This device can be used for the study of complex interfacial systems and also to easily measure the key parameters of an electrochemical process. As a proof of concept, the study of the roughening of a gold electrode in KCl medium is performed, identifying key steps in the passivation and nanoparticle generation on the gold surface.
Collapse
Affiliation(s)
- Martin Perez-Estebanez
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Juan V. Perales-Rondon
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
- Hydrogen
and Power-to-X Department, Iberian Centre
for Research in Energy Storage, Polígono 13, Parcela 31, ≪El Cuartillo≫, E-10004 Cáceres, Spain
| | - Sheila Hernandez
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
- Chair
of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Aranzazu Heras
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Alvaro Colina
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| |
Collapse
|
2
|
Ramasamy M, Ha JW. Single-Particle Spectroelectrochemistry: Promoting the Electrocatalytic Activity of Gold Nanorods via Oxygen Plasma Treatment without Structural Deformation. Anal Chem 2024; 96:737-745. [PMID: 38175953 DOI: 10.1021/acs.analchem.3c03850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Understanding of the electrocatalytic activity enhancement in gold nanoparticles is still limited. Herein, we present the effect of the oxygen plasma treatment on the electrochemical activity of gold nanorods (AuNRs). Oxygen plasma treatment resulted in the blueshift and line width narrowing of the localized surface plasmon resonance (LSPR) spectra obtained from individual AuNRs immobilized on an indium tin oxide (ITO) surface. These changes can be attributed to increases in the surface charges of the AuNRs. The formation of a Au-ITO heterojunction provided structural stability to the immobilized AuNRs regardless of the duration of oxygen plasma exposure. The electrocatalytic oxidation of hydrogen peroxide (H2O2) was induced by increases in the free-electron densities on the surfaces of these AuNRs owing to oxygen plasma treatment, and Au did not dissolve under the experimental conditions. However, the potential-dependent LSPR spectra of the individual AuNRs showed similar patterns of LSPR behavior, irrespective of the duration of oxygen plasma treatment and the concentration of H2O2. Therefore, this study based on single-particle spectroelectrochemistry and cyclic voltammetry improves the understanding of the role of oxygen plasma treatment in promoting the catalytic activity of structurally stable AuNRs immobilized on an ITO surface.
Collapse
Affiliation(s)
- Mukunthan Ramasamy
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Ji Won Ha
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
3
|
Jing C, Long Y. Observing electrochemistry on single plasmonic nanoparticles. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Chao Jing
- Department of Hydrogen Technique Chinese Academy of Sciences Shanghai Institute of Applied Physics Shanghai P. R. China
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai P. R. China
| | - Yi‐Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing P. R. China
| |
Collapse
|
4
|
Kim JH, Cha S, Kim Y, Son J, Park JE, Oh JW, Nam JM. Nontrivial, Unconventional Electrochromic Behaviors of Plasmonic Nanocubes. NANO LETTERS 2021; 21:7512-7518. [PMID: 34491741 DOI: 10.1021/acs.nanolett.1c01639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasmonic electrochromism, a change in the localized surface plasmon resonance (LSPR) with an applied electric potential, has been attracting increasing attention for the development of spectroscopic tools or optoelectronic systems. There is a consensus on the mechanism of plasmonic electrochromism based on the classical capacitor and the Drude model. However, the electrochromic behaviors of metallic nanoparticles in narrow optical windows have been demonstrated only with small monotonic LSPR shifts, which limits the use of the electrochromism. Here, we observed three distinct electrochromic behaviors of gold nanocubes with a wide potential range through in situ dark-field electrospectroscopy. Interestingly, the nanocubes show a faster frequency shift under the highly negative potential, and this opens the possibility of largely tunable electrochromic LSPR shifts. The reversibility of the electrochemical switching with these cubes are also shown. We attribute this unexpected change beyond classical understandings to the material-specific quantum mechanical electronic structures of the plasmonic materials.
Collapse
Affiliation(s)
- Jae-Ho Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Seungsang Cha
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Yoonhee Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Eun Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Wook Oh
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
5
|
Pan S, Li X, Yadav J. Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Phys Chem Chem Phys 2021; 23:19120-19129. [PMID: 34524292 DOI: 10.1039/d1cp02801d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review describes recent progress of spectroelectrochemistry (SEC) analysis of single metallic nanoparticles (NPs) which have strong surface plasmon resonance properties. Dark-field scattering (DFS), photoluminescence (PL), and electrogenerated chemiluminescence (ECL) are three commonly used optical methods to detect individual NPs and investigate their local redox activities in an electrochemical cell. These SEC methods are highly dependent on a strong light-scattering cross-section of plasmonic metals and their electrocatalytic characteristics. The surface chemistry and the catalyzed reaction mechanism of single NPs and their chemical transformations can be studied using these SEC methods. Recent progress in the experimental design and fundamental understanding of single-NP electrochemistry and catalyzed reactions using DFS, PL, and ECL is described along with selected examples from recent publications in this field. Perspectives on the challenges and possible solutions for these SEC methods and potential new directions are discussed.
Collapse
Affiliation(s)
- Shanlin Pan
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Xiao Li
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Jeetika Yadav
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
6
|
Kim Y, Cha S, Kim JH, Oh JW, Nam JM. Electrochromic response and control of plasmonic metal nanoparticles. NANOSCALE 2021; 13:9541-9552. [PMID: 34019053 DOI: 10.1039/d1nr01055g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic electrochromism, the dependence of the colour of plasmonic materials on the applied electrical potential, has been under the spotlight recently as a key element for the development of optoelectronic devices and spectroscopic tools. In this review, we focus on the electrochromic behaviour and underlying mechanistic principles of plasmonic metal nanoparticles, whose localised surface plasmon resonance occurs in the visible part of the electromagnetic spectrum, and present a comprehensive review on the recent progress in understanding and controlling plasmonic electrochromism. The mechanisms underlying the electrochromism of plasmonic metal nanoparticles could be divided into four categories, based on the origin of the LSPR shift: (1) capacitive charging model accompanying variation in the Fermi level, (2) faradaic reactions, (3) non-faradaic reactions, and (4) electrochemically active functional molecule-mediated mechanism. We also review recent attempts to synchronise the simulation with the experimental results and the strategies to overcome the intrinsically diminutive LSPR change of the plasmonic metal nanoparticles. A better understanding and controllability of plasmonic electrochromism provides new insights into and means of the connection between photoelectrochemistry and plasmonics as well as future directions for producing advanced optoelectronic materials and devices.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
| | | | | | | | | |
Collapse
|
7
|
Lemineur JF, Ciocci P, Noël JM, Ge H, Combellas C, Kanoufi F. Imaging and Quantifying the Formation of Single Nanobubbles at Single Platinum Nanoparticles during the Hydrogen Evolution Reaction. ACS NANO 2021; 15:2643-2653. [PMID: 33523639 DOI: 10.1021/acsnano.0c07674] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While numerous efforts have been made toward the design of sustainable and efficient nanocatalysts of the hydrogen evolution reaction, there is a need for the operando observation and quantification of the formation of gas nanobubbles (NBs) involved in this electrochemical reaction. It is achieved herein through interference reflection microscopy coupled to electrochemistry and optical modeling. In addition to analyzing the geometry and growth rate of individual NBs at single nanocatalysts, the toolbox offered by superlocalization and quantitative label-free optical microscopy allows analyzing the geometry (contact angle and footprint with surface) of individual NBs and their growth rate. It turns out that, after a few seconds, NBs are steadily growing while they are fully covering the Pt nanoparticles that allowed their nucleation and their pinning on the electrode surface. It then raises relevant questions related to gas evolution catalysts, such as, for example, does the evaluation of NB growth at the single nanocatalyst really reflect its electrochemical activity?
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Hongxin Ge
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | | | | |
Collapse
|
8
|
Mehta N, Sahu SP, Shaik S, Devireddy R, Gartia MR. Dark-field hyperspectral imaging for label free detection of nano-bio-materials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1661. [PMID: 32755036 DOI: 10.1002/wnan.1661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/21/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)-based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of these nanomaterials to understand the cellular uptake and transport of these materials in cells, tissues, and environment. Traditional techniques such as transmission electron microscopy, and mass spectrometry to analyze NP-based cellular transport or toxicity effect are expensive, require extensive sample preparation, and are low-throughput. Dark-field hyperspectral imaging (DF-HSI), an integration of spectroscopy and microscopy/imaging, provides the ability to investigate cellular transport of these NPs and to quantify the distribution of them within bio-materials. DF-HSI also offers versatility in non-invasively monitoring microorganisms, single cell, and proteins. DF-HSI is a low-cost, label-free technique that is minimally invasive and is a viable choice for obtaining high-throughput quantitative molecular analyses. Multimodal imaging modalities such as Fourier transform infrared and Raman spectroscopy are also being integrated with HSI systems to enable chemical imaging of the samples. HSI technology is being applied in surgeries to obtain molecular information about the tissues in real-time. This article provides brief overview of fundamental principles of DF-HSI and its application for nanomaterials, protein-detection, single-cell analysis, microbiology, surgical procedures along with technical challenges and future integrative approach with other imaging and measurement modalities. This article is categorized under: Diagnostic Tools > in vitro Nanoparticle-Based Sensing Diagnostic Tools > in vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Nishir Mehta
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sushant P Sahu
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Shahensha Shaik
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
9
|
Lemineur JF, Noël JM, Combellas C, Kanoufi F. Revealing the sub-50 ms electrochemical conversion of silver halide nanocolloids by stochastic electrochemistry and optical microscopy. NANOSCALE 2020; 12:15128-15136. [PMID: 32657309 DOI: 10.1039/d0nr03799k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silver based ionic crystal nanoparticles (NPs) are interesting nanomaterials for energy storage and conversion, e.g. their colloidal solutions could be used as a reversible redox nanofluid in semi-solid redox flow cells. In this context, the reductive transformation of Brownian silver halide, AgX, NPs into silver NPs is probed by single NP electrochemistry, complemented by operando high resolution monitoring. However, their light sensitivity and poor conductivity make the operando monitoring of their chemical activity challenging. The electrochemical collisions of single AgX NPs onto a negatively biased electrode evidence a full conversion through multiple reduction steps within 3-10 ms. This is further corroborated by simulation of the conversion process and operando through a high resolution optical microscopy technique (Backside Absorbing Layer Microscopy, BALM). Both techniques are interesting strategies to infer at the single NP level the intrinsic charge capacity and charging rate of redox active Brownian nanomaterials, demonstrating the interest of the fast and reversible AgX/Ag system as a redox nanofluid.
Collapse
Affiliation(s)
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | | | | |
Collapse
|
10
|
Lemineur JF, Noël JM, Courty A, Ausserré D, Combellas C, Kanoufi F. In Situ Optical Monitoring of the Electrochemical Conversion of Dielectric Nanoparticles: From Multistep Charge Injection to Nanoparticle Motion. J Am Chem Soc 2020; 142:7937-7946. [PMID: 32223242 DOI: 10.1021/jacs.0c02071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
By shortening solid-state diffusion times, the nanoscale size reduction of dielectric materials-such as ionic crystals-has fueled synthetic efforts toward their use as nanoparticles, NPs, in electrochemical storage and conversion cells. Meanwhile, there is a lack of strategies able to image the dynamics of such conversion, operando and at the single NP level. It is achieved here by optical microscopy for a model dielectric ionic nanocrystal, a silver halide NP. Rather than the classical core-shrinking mechanism often used to rationalize the complete electrochemical conversion and charge storage in NPs, an alternative mechanism is proposed here. Owing to its poor conductivity, the NP conversion proceeds to completion through the formation of multiple inclusions. The superlocalization of NP during such heterogeneous multiple-step conversion suggests the local release of ions, which propels the NP toward reacting sites enabling its full conversion.
Collapse
Affiliation(s)
- Jean-François Lemineur
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France.,Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Alexa Courty
- Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Dominique Ausserré
- Université du Maine, Institut des Matériaux et Molécules du Mans, CNRS-UMR 6283, Avenue O. Messiaen, 72000 Le Mans, France
| | - Catherine Combellas
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Frédéric Kanoufi
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| |
Collapse
|
11
|
Optical methods for studying local electrochemical reactions with spatial resolution: A critical review. Anal Chim Acta 2019; 1074:1-15. [DOI: 10.1016/j.aca.2019.02.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/19/2022]
|
12
|
Feng J, Cao X, Pan Q, He Y. Direct observation of single plasmonic metal nanoparticle reaction in microcolumn with chromatic‐aberration‐free LASER light‐sheet scattering imaging. Electrophoresis 2019; 40:2227-2234. [DOI: 10.1002/elps.201900071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jingjing Feng
- Department of chemistry Tsinghua University Beijing P. R. China
| | - Xuan Cao
- College of pharmacy, Institute of pharmacy and pharmacology University of South China Hengyang Hunan P. R. China
| | - Qi Pan
- Department of chemistry Tsinghua University Beijing P. R. China
| | - Yan He
- Department of chemistry Tsinghua University Beijing P. R. China
| |
Collapse
|
13
|
Wonner K, Evers MV, Tschulik K. Simultaneous Opto- and Spectro-Electrochemistry: Reactions of Individual Nanoparticles Uncovered by Dark-Field Microscopy. J Am Chem Soc 2018; 140:12658-12661. [DOI: 10.1021/jacs.8b02367] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kevin Wonner
- Chair of Analytical Chemistry II and Center for Electrochemical Sciences (CES), ZEMOS 1.45, Ruhr-University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Mathies V. Evers
- Chair of Analytical Chemistry II and Center for Electrochemical Sciences (CES), ZEMOS 1.45, Ruhr-University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Kristina Tschulik
- Chair of Analytical Chemistry II and Center for Electrochemical Sciences (CES), ZEMOS 1.45, Ruhr-University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| |
Collapse
|
14
|
Liu T, Li M, Wang Y, Fang Y, Wang W. Electrochemical impedance spectroscopy of single Au nanorods. Chem Sci 2018; 9:4424-4429. [PMID: 29896383 PMCID: PMC5956977 DOI: 10.1039/c8sc00983j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022] Open
Abstract
Monochromatic dark-field microscopy coupled with high-frequency potential modulation leads to non-faradaic electrochemical impedance spectroscopy of single Au nanorods.
We propose monochromatic dark-field imaging microscopy (DFM) to measure the non-faradaic electrochemical impedance spectroscopy (EIS) of single Au nanorods (AuNRs). DFM was utilized to monitor the plasmonic scattering of monochromatic incident light by surface-immobilized individual AuNRs. When modulating the surface potential at a certain frequency, non-faradaic charging and discharging of AuNRs altered their electron density, leading to periodical fluctuations in the scattering intensity. Analysis of the amplitude and phase of the optical intensity fluctuation as a function of modulation frequency resulted in the EIS of single AuNRs. High-frequency (>100 Hz) modulation allowed us to differentiate the intrinsic charging effect from other contributions such as the periodic migration and accumulation of counterions in the surrounding medium, because the latter occurred at a longer timescale. As a result, single nanoparticle EIS led to the surface capacitance of single AuNRs being closer to the theoretical value. Since interfacial capacitance has been proven sensitive to molecular interactions, the present work also offers a new platform for single nanoparticle sensing by measuring the single nanoparticle capacitance.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Meng Li
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Yongjie Wang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Yimin Fang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| |
Collapse
|
15
|
Cao X, Lei G, Feng J, Pan Q, Wen X, He Y. A Novel Color Modulation Analysis Strategy through Tunable Multiband Laser for Nanoparticle Identification and Evaluation. Anal Chem 2018; 90:2501-2507. [PMID: 29334223 DOI: 10.1021/acs.analchem.7b03636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Creating color difference and improving the color resolution in digital imaging is crucial for better application of color analysis. Herein, a novel color modulation analysis strategy was developed by using a homemade tunable multiband laser illumination device, in which the portions of R, G, and B components of the illumination light are discretionarily adjustable, and hence the sample color could be visually modulated continuously in the RGB color space. Through this strategy, the color appearance of single gold nanorods (AuNRs) under dark-field microscopy was migrated from the spectrally insensitive red region to the spectrally sensitive green-yellow region. Unlike the traditional continuous-wave light source illumination, wherein the small spectral variations in the samples within a narrow spectral range are averaged by the whole spectrum of the light source, leading to little color difference, the application of sharp, multiband laser illumination could enlarge the color separation between samples, thus resulting in high spectral sensitivity in color analysis. By comparing the corresponding color evolution processes of different samples as the multiband combination of the laser illumination was changed, more efficient color separation of AuNRs was achieved. With this instrument and single Ag@AuNRs as the sulfide probe, we achieved high throughput and highly sensitive detection of sulfide at a detection limit of 0.1 nM, a more than 2 orders of magnitude improvement compared to the previous color sensing scheme. This strategy could be utilized for nanoparticle identification, evaluation, and determination in biological imaging and biochemical analysis.
Collapse
Affiliation(s)
- Xuan Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha, Hunan 410082, P. R. China.,Institute of Pharmacy and Pharmacology, University of South China , Hengyang, Hunan 421001, P. R. China
| | - Gang Lei
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Jingjing Feng
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Qi Pan
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Xiaodong Wen
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Yan He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha, Hunan 410082, P. R. China.,Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| |
Collapse
|
16
|
Abstract
Chemical activity of single nanoparticles can be imaged and determined by monitoring the optical signal of each individual during chemical reactions with advanced optical microscopes. It allows for clarifying the functional heterogeneity among individuals, and for uncovering the microscopic reaction mechanisms and kinetics that could otherwise be averaged out in ensemble measurements.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
17
|
Brasiliense V, Clausmeyer J, Dauphin AL, Noël JM, Berto P, Tessier G, Schuhmann W, Kanoufi F. Optoelektrochemische In-situ-Beobachtung der kathodischen Abscheidung einzelner Cobaltnanopartikel. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vitor Brasiliense
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS, CNRS UMR 7086; 15 rue J. de Baïf 75013 Paris Frankreich
| | - Jan Clausmeyer
- Analytical Chemistry - Center for Electrochemical Sciences, CES; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Deutschland
- University of Texas at Austin; Department of Chemistry and Biochemistry; 105 E 24th St. Stop A5300 Austin TX 78712-1224 USA
| | - Alice L. Dauphin
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS, CNRS UMR 7086; 15 rue J. de Baïf 75013 Paris Frankreich
| | - Jean-Marc Noël
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS, CNRS UMR 7086; 15 rue J. de Baïf 75013 Paris Frankreich
| | - Pascal Berto
- Université Sorbonne Paris Cité, Université Paris Descartes; Neurophotonics Laboratory, CNRS UMR 8250; 45 Rue des Saints Pères 75006 Paris Frankreich
| | - Gilles Tessier
- Université Sorbonne Paris Cité, Université Paris Descartes; Neurophotonics Laboratory, CNRS UMR 8250; 45 Rue des Saints Pères 75006 Paris Frankreich
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences, CES; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Deutschland
| | - Fréderic Kanoufi
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS, CNRS UMR 7086; 15 rue J. de Baïf 75013 Paris Frankreich
| |
Collapse
|
18
|
Brasiliense V, Clausmeyer J, Dauphin AL, Noël JM, Berto P, Tessier G, Schuhmann W, Kanoufi F. Opto-electrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles. Angew Chem Int Ed Engl 2017. [PMID: 28628267 DOI: 10.1002/anie.201704394] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Single-particle electrochemistry at a nanoelectrode is explored by dark-field optical microscopy. The analysis of the scattered light allows in situ dynamic monitoring of the electrodeposition of single cobalt nanoparticles down to a radius of 65 nm. Larger sub-micrometer particles are directly sized optically by super-localization of the edges and the scattered light contains complementary information concerning the particle redox chemistry. This opto-electrochemical approach is used to derive mechanistic insights about electrocatalysis that are not accessible from single-particle electrochemistry.
Collapse
Affiliation(s)
- Vitor Brasiliense
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS, CNRS UMR 7086, 15 rue J. de Baïf, 75013, Paris, France
| | - Jan Clausmeyer
- Analytical Chemistry-Center for Electrochemical Sciences, CES, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
- Present address: University of Texas at Austin, Department of Chemistry and Biochemistry, 105 E 24th St. Stop A5300, Austin, TX, 78712-1224, USA
| | - Alice L Dauphin
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS, CNRS UMR 7086, 15 rue J. de Baïf, 75013, Paris, France
| | - Jean-Marc Noël
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS, CNRS UMR 7086, 15 rue J. de Baïf, 75013, Paris, France
| | - Pascal Berto
- Université Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics Laboratory, CNRS UMR 8250, 45 Rue des Saints Pères, 75006, Paris, France
| | - Gilles Tessier
- Université Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics Laboratory, CNRS UMR 8250, 45 Rue des Saints Pères, 75006, Paris, France
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences, CES, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Fréderic Kanoufi
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS, CNRS UMR 7086, 15 rue J. de Baïf, 75013, Paris, France
| |
Collapse
|