1
|
Xie RC, Gao J, Wang SC, Li H, Wang W. Optically Imaging In Situ Effects of Electrochemical Cycling on Single Nanoparticle Electrocatalysis. Anal Chem 2024. [PMID: 38285921 DOI: 10.1021/acs.analchem.3c04425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Single-nanoparticle studies often need one or a series of nanoparticle populations that are designed with differences in a nominally particular structural parameter to clarify the structure-activity relationship (SAR). However, the heterogeneity of various properties within any population would make it rather difficult to approach an ideal one-parameter control. In situ modification ensures the same nanoparticle to be investigated and also avoids complicating effects from the otherwise often needed ex situ operations. Herein, we apply electrochemical cycling to single platinum nanoparticles and optically examine their SAR. An electrocatalytic fluorescent microscopic method is established to evaluate the apparent catalytic activity of a number of single nanoparticles toward the oxygen reduction reaction. Meanwhile, dark-field microscopy with the substrate electrode under a cyclic potential control is found to be able to assess the electrochemically active surface area (ECSA) of single nanoparticles via induced chloride redox electrochemistry. Consequently, nanoparticles with drastically increased catalytic activity are discovered to have larger ECSAs upon potential regulation, and interestingly, there are also a few particles with decreased activity, as opposed to the overall trend, that all develop a smaller ECSA in the process. The deactivated nanoparticles against the overall enhancement effects of potential cycling are revealed for the first time. As such, the SAR of single nanoparticles when subjected to an in situ structural control is optically demonstrated.
Collapse
Affiliation(s)
- Ruo-Chen Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Si-Cong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Nguyen MC, Berto P, Valentino F, Lemineur JF, Noel JM, Kanoufi F, Tessier G. 3D Spectroscopic Tracking of Individual Brownian Nanoparticles during Galvanic Exchange. ACS NANO 2022; 16:14422-14431. [PMID: 36099198 DOI: 10.1021/acsnano.2c04792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monitoring chemical reactions in solutions at the scale of individual entities is challenging: single-particle detection requires small confocal volumes, which are hardly compatible with Brownian motion, particularly when long integration times are necessary. Here, we propose a real-time (10 Hz) holography-based nm-precision 3D tracking of single moving nanoparticles. Using this localization, the confocal collection volume is dynamically adjusted to follow the moving nanoparticle and allow continuous spectroscopic monitoring. This concept is applied to study galvanic exchange in freely moving colloidal silver nanoparticles with gold ions generated in situ. While the Brownian trajectory reveals particle size, spectral shifts dynamically reveal composition changes and transformation kinetics at the single-object level, pointing at different transformation kinetics for free and tethered particles.
Collapse
Affiliation(s)
- Minh-Chau Nguyen
- Université Paris Cité, ITODYS, CNRS, F-75013 Paris, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Pascal Berto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- Université Paris Cité, 45 rue des Saints-Pères, F-75006 Paris, France
| | - Fabrice Valentino
- Université Paris Cité, 45 rue des Saints-Pères, F-75006 Paris, France
| | | | - Jean-Marc Noel
- Université Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | | | - Gilles Tessier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- Université Paris Cité, 45 rue des Saints-Pères, F-75006 Paris, France
| |
Collapse
|
3
|
Jiang B, Gu W, Jiang W, Lv M, Niu B, Wu X, Wang W, Wang H. Directly Imaging Dynamic Electronic Coupling during Electrochemical Oxidation of Single Silver Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209964. [DOI: 10.1002/anie.202209964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Wenjie Gu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing Jiangsu 210023 China
| | - Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Mengqi Lv
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Xue‐Jun Wu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
4
|
Jiang B, Gu W, Jiang W, Lv M, Niu B, Wu XJ, Wang W, Wang H. Directly Imaging Dynamic Electronic Coupling during Electrochemical Oxidation of Single Silver Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo Jiang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wenjie Gu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wenxuan Jiang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Mengqi Lv
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Ben Niu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Xue-Jun Wu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wei Wang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hui Wang
- Nanjing University Nanjing Xianlin road No. 163 CHINA
| |
Collapse
|
5
|
Lemineur JF, Wang H, Wang W, Kanoufi F. Emerging Optical Microscopy Techniques for Electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:57-82. [PMID: 35216529 DOI: 10.1146/annurev-anchem-061020-015943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An optical microscope is probably the most intuitive, simple, and commonly used instrument to observe objects and discuss behaviors through images. Although the idea of imaging electrochemical processes operando by optical microscopy was initiated 40 years ago, it was not until significant progress was made in the last two decades in advanced optical microscopy or plasmonics that it could become a mainstream electroanalytical strategy. This review illustrates the potential of different optical microscopies to visualize and quantify local electrochemical processes with unprecedented temporal and spatial resolution (below the diffraction limit), up to the single object level with subnanoparticle or single-molecule sensitivity. Developed through optically and electrochemically active model systems, optical microscopy is now shifting to materials and configurations focused on real-world electrochemical applications.
Collapse
Affiliation(s)
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China;
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China;
| | | |
Collapse
|
6
|
Pan S, Li X, Yadav J. Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Phys Chem Chem Phys 2021; 23:19120-19129. [PMID: 34524292 DOI: 10.1039/d1cp02801d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review describes recent progress of spectroelectrochemistry (SEC) analysis of single metallic nanoparticles (NPs) which have strong surface plasmon resonance properties. Dark-field scattering (DFS), photoluminescence (PL), and electrogenerated chemiluminescence (ECL) are three commonly used optical methods to detect individual NPs and investigate their local redox activities in an electrochemical cell. These SEC methods are highly dependent on a strong light-scattering cross-section of plasmonic metals and their electrocatalytic characteristics. The surface chemistry and the catalyzed reaction mechanism of single NPs and their chemical transformations can be studied using these SEC methods. Recent progress in the experimental design and fundamental understanding of single-NP electrochemistry and catalyzed reactions using DFS, PL, and ECL is described along with selected examples from recent publications in this field. Perspectives on the challenges and possible solutions for these SEC methods and potential new directions are discussed.
Collapse
Affiliation(s)
- Shanlin Pan
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Xiao Li
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Jeetika Yadav
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
7
|
Saha P, Rahman MM, Hill CM. Borohydride oxidation electrocatalysis at individual, shape‐controlled Au nanoparticles. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Partha Saha
- Department of Chemistry University of Wyoming Laramie Wyoming USA
| | | | - Caleb M. Hill
- Department of Chemistry University of Wyoming Laramie Wyoming USA
| |
Collapse
|
8
|
Lalisse A, Mohtar AA, Nguyen MC, Carminati R, Plain J, Tessier G. Quantitative Temperature Measurements in Gold Nanorods Using Digital Holography. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10313-10320. [PMID: 33599478 DOI: 10.1021/acsami.0c22420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Temperature characterization and quantification at the nanoscale remain core challenges in applications based on photoinduced heating of nanoparticles. Here, we propose a new approach to obtain quantitative temperature measurements on individual nanoparticles by combining modulated photothermal stimulation and heterodyne digital holography. From full-field reconstructed holograms, the temperature is determined with a precision of 0.3 K via a simple approach without requiring any calibration or fitting parameters. As an application, the dependence of temperature on the aspect ratio of gold nanoparticles is investigated. A good agreement with numerical simulation is observed.
Collapse
Affiliation(s)
- Adrien Lalisse
- Laboratoire de Neurophotonique CNRS UMR8250, Université Paris Descartes, 75270 Paris, France
- Light, Nanomaterials, and Nanotechnology L2n, UTT and CNRS ERL 7004, 12 rue Marie Curie - CS 42060, 10004 Troyes, France
| | - Abeer Al Mohtar
- Laboratoire de Neurophotonique CNRS UMR8250, Université Paris Descartes, 75270 Paris, France
- ESPCI Paris, PSL University, CNRS, Institut Langevin, 1 rue Jussieu, 75005 Paris, France
| | - Minh Chau Nguyen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Rémi Carminati
- ESPCI Paris, PSL University, CNRS, Institut Langevin, 1 rue Jussieu, 75005 Paris, France
| | - Jérôme Plain
- Light, Nanomaterials, and Nanotechnology L2n, UTT and CNRS ERL 7004, 12 rue Marie Curie - CS 42060, 10004 Troyes, France
| | - Gilles Tessier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| |
Collapse
|
9
|
Lemineur JF, Noël JM, Combellas C, Kanoufi F. Optical monitoring of the electrochemical nucleation and growth of silver nanoparticles on electrode: From single to ensemble nanoparticles inspection. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Lemineur JF, Noël JM, Combellas C, Kanoufi F. Revealing the sub-50 ms electrochemical conversion of silver halide nanocolloids by stochastic electrochemistry and optical microscopy. NANOSCALE 2020; 12:15128-15136. [PMID: 32657309 DOI: 10.1039/d0nr03799k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silver based ionic crystal nanoparticles (NPs) are interesting nanomaterials for energy storage and conversion, e.g. their colloidal solutions could be used as a reversible redox nanofluid in semi-solid redox flow cells. In this context, the reductive transformation of Brownian silver halide, AgX, NPs into silver NPs is probed by single NP electrochemistry, complemented by operando high resolution monitoring. However, their light sensitivity and poor conductivity make the operando monitoring of their chemical activity challenging. The electrochemical collisions of single AgX NPs onto a negatively biased electrode evidence a full conversion through multiple reduction steps within 3-10 ms. This is further corroborated by simulation of the conversion process and operando through a high resolution optical microscopy technique (Backside Absorbing Layer Microscopy, BALM). Both techniques are interesting strategies to infer at the single NP level the intrinsic charge capacity and charging rate of redox active Brownian nanomaterials, demonstrating the interest of the fast and reversible AgX/Ag system as a redox nanofluid.
Collapse
Affiliation(s)
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | | | | |
Collapse
|
11
|
Lemineur JF, Noël JM, Courty A, Ausserré D, Combellas C, Kanoufi F. In Situ Optical Monitoring of the Electrochemical Conversion of Dielectric Nanoparticles: From Multistep Charge Injection to Nanoparticle Motion. J Am Chem Soc 2020; 142:7937-7946. [PMID: 32223242 DOI: 10.1021/jacs.0c02071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
By shortening solid-state diffusion times, the nanoscale size reduction of dielectric materials-such as ionic crystals-has fueled synthetic efforts toward their use as nanoparticles, NPs, in electrochemical storage and conversion cells. Meanwhile, there is a lack of strategies able to image the dynamics of such conversion, operando and at the single NP level. It is achieved here by optical microscopy for a model dielectric ionic nanocrystal, a silver halide NP. Rather than the classical core-shrinking mechanism often used to rationalize the complete electrochemical conversion and charge storage in NPs, an alternative mechanism is proposed here. Owing to its poor conductivity, the NP conversion proceeds to completion through the formation of multiple inclusions. The superlocalization of NP during such heterogeneous multiple-step conversion suggests the local release of ions, which propels the NP toward reacting sites enabling its full conversion.
Collapse
Affiliation(s)
- Jean-François Lemineur
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France.,Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Alexa Courty
- Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Dominique Ausserré
- Université du Maine, Institut des Matériaux et Molécules du Mans, CNRS-UMR 6283, Avenue O. Messiaen, 72000 Le Mans, France
| | - Catherine Combellas
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Frédéric Kanoufi
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| |
Collapse
|
12
|
Patrice FT, Qiu K, Ying YL, Long YT. Single Nanoparticle Electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:347-370. [PMID: 31018101 DOI: 10.1146/annurev-anchem-061318-114902] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Experimental techniques to monitor and visualize the behaviors of single nanoparticles have not only revealed the significant spatial and temporal heterogeneity of those individuals, which are hidden in ensemble methods, but more importantly, they have also enabled researchers to elucidate the origin of such heterogeneity. In pursuing the intrinsic structure-function relations of single nanoparticles, the recently developed stochastic collision approach demonstrated some early promise. However, it was later realized that the appropriate sizing of a single nanoparticle by an electrochemical method could be far more challenging than initially expected owing to the dynamic motion of nanoparticles in electrolytes and complex charge-transfer characteristics at electrode surfaces. This clearly indicates a strong necessity to integrate single nanoparticle electrochemistry with high-resolution optical microscopy. Hence, this review aims to give a timely update of the latest progress for both electrochemically sensing and seeing single nanoparticles. A major focus is on collision-based measurements, where nanoparticles or single entities in solution impact on a collector electrode and the electrochemical response is recorded. These measurements are further enhanced with optical measurements in parallel. For completeness, advances in other related methods for single nanoparticle electrochemistry are also included.
Collapse
Affiliation(s)
- Fato Tano Patrice
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
| | - Kaipei Qiu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
| | - Yi-Lun Ying
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Qiu K, Fato TP, Wang PY, Long YT. Real-time monitoring of electrochemical reactions on single nanoparticles by dark-field and Raman microscopy. Dalton Trans 2019; 48:3809-3814. [DOI: 10.1039/c8dt05141k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dark-field and Raman microscopy to probe the single NP electrochemistry in real time.
Collapse
Affiliation(s)
- Kaipei Qiu
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Tano Patrice Fato
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Pei-Yao Wang
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
14
|
Saha P, Hill JW, Walmsley JD, Hill CM. Probing Electrocatalysis at Individual Au Nanorods via Correlated Optical and Electrochemical Measurements. Anal Chem 2018; 90:12832-12839. [DOI: 10.1021/acs.analchem.8b03360] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Partha Saha
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Joshua W. Hill
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Joshua D. Walmsley
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Caleb M. Hill
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
15
|
Brasiliense V, Noël J, Wonner K, Tschulik K, Combellas C, Kanoufi F. Single Nanoparticle Growth from Nanoparticle Tracking Analysis: From Monte Carlo Simulations to Nanoparticle Electrogeneration. ChemElectroChem 2018. [DOI: 10.1002/celc.201800742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Vitor Brasiliense
- Université Sorbonne Paris Cité, Université Paris DiderotITODYS, CNRS UMR 7086 15 rue Jean-Antoine de Baïf F-75013 Paris France
- Northwestern University Department of Chemistry 2145 Sheridan Rd. 60208 Evanston IL USA
| | - Jean‐Marc Noël
- Université Sorbonne Paris Cité, Université Paris DiderotITODYS, CNRS UMR 7086 15 rue Jean-Antoine de Baïf F-75013 Paris France
| | - Kevin Wonner
- Ruhr-University BochumChair of Analytical Chemistry II and Centre for Electrochemical Sciences (CES), ZEMOS Bochum 44801 Germany
| | - Kristina Tschulik
- Ruhr-University BochumChair of Analytical Chemistry II and Centre for Electrochemical Sciences (CES), ZEMOS Bochum 44801 Germany
| | - Catherine Combellas
- Université Sorbonne Paris Cité, Université Paris DiderotITODYS, CNRS UMR 7086 15 rue Jean-Antoine de Baïf F-75013 Paris France
| | - Frédéric Kanoufi
- Université Sorbonne Paris Cité, Université Paris DiderotITODYS, CNRS UMR 7086 15 rue Jean-Antoine de Baïf F-75013 Paris France
| |
Collapse
|
16
|
Brasiliense V, Clausmeyer J, Berto P, Tessier G, Combellas C, Schuhmann W, Kanoufi F. Monitoring Cobalt-Oxide Single Particle Electrochemistry with Subdiffraction Accuracy. Anal Chem 2018; 90:7341-7348. [DOI: 10.1021/acs.analchem.8b00649] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vitor Brasiliense
- Université
Sorbonne Paris Cité, Université Paris Diderot, ITODYS,
CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, F-75013 Paris, France
| | - Jan Clausmeyer
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Pascal Berto
- Université
Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics
Laboratory, CNRS UMR 8250, 45 Rue des Saints Pères, F-75006 Paris, France
| | - Gilles Tessier
- Université
Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics
Laboratory, CNRS UMR 8250, 45 Rue des Saints Pères, F-75006 Paris, France
| | - Catherine Combellas
- Université
Sorbonne Paris Cité, Université Paris Diderot, ITODYS,
CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, F-75013 Paris, France
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Frédéric Kanoufi
- Université
Sorbonne Paris Cité, Université Paris Diderot, ITODYS,
CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, F-75013 Paris, France
| |
Collapse
|
17
|
Little CA, Batchelor‐McAuley C, Ngamchuea K, Lin C, Young NP, Compton RG. Coupled Optical and Electrochemical Probing of Silver Nanoparticle Destruction in a Reaction Layer. ChemistryOpen 2018; 7:370-380. [PMID: 29872612 PMCID: PMC5974555 DOI: 10.1002/open.201800048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 12/27/2022] Open
Abstract
The oxidation of silver nanoparticles is induced to occur near to, but not at, an electrode surface. This reaction at a distance from the electrode is studied through the use of dark-field microscopy, allowing individual nanoparticles and their reaction with the electrode product to be visualized. The oxidation product diffuses away from the electrode and oxidizes the nanoparticles in a reaction layer, resulting in their destruction. The kinetics of the silver nanoparticle solution-phase reaction is shown to control the length scale over which the nanoparticles react. In general, the new methodology offers a route by which nanoparticle reactivity can be studied close to an electrode surface.
Collapse
Affiliation(s)
- Christopher A. Little
- Physical and Theoretical Chemistry LaboratoryOxford UniversitySouth Parks RoadOxfordOX1 3QZUnited Kingdom
| | | | - Kamonwad Ngamchuea
- Physical and Theoretical Chemistry LaboratoryOxford UniversitySouth Parks RoadOxfordOX1 3QZUnited Kingdom
| | - Chuhong Lin
- Physical and Theoretical Chemistry LaboratoryOxford UniversitySouth Parks RoadOxfordOX1 3QZUnited Kingdom
| | - Neil P. Young
- Physical and Theoretical Chemistry LaboratoryOxford UniversitySouth Parks RoadOxfordOX1 3QZUnited Kingdom
| | - Richard G. Compton
- Physical and Theoretical Chemistry LaboratoryOxford UniversitySouth Parks RoadOxfordOX1 3QZUnited Kingdom
| |
Collapse
|
18
|
Lemineur JF, Noël JM, Combellas C, Ausserré D, Kanoufi F. The promise of antireflective gold electrodes for optically monitoring the electro-deposition of single silver nanoparticles. Faraday Discuss 2018; 210:381-395. [DOI: 10.1039/c8fd00037a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combined to electrochemical actuation, it allows the dynamic in situ visualization of the electrochemical growth and dissolution of individual Ag nanoparticles.
Collapse
Affiliation(s)
| | - Jean-Marc Noël
- Université Sorbonne Paris Cité
- Université Paris Diderot
- ITODYS
- CNRS UMR 7086
- F-75013 Paris
| | - Catherine Combellas
- Université Sorbonne Paris Cité
- Université Paris Diderot
- ITODYS
- CNRS UMR 7086
- F-75013 Paris
| | - Dominique Ausserré
- Université du Maine
- Institut des Matériaux et Molécules du Mans
- CNRS UMR 6283
- F-72000 Le Mans
- France
| | - Frédéric Kanoufi
- Université Sorbonne Paris Cité
- Université Paris Diderot
- ITODYS
- CNRS UMR 7086
- F-75013 Paris
| |
Collapse
|
19
|
Hao R, Fan Y, Zhang B. Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface. J Am Chem Soc 2017; 139:12274-12282. [PMID: 28799330 DOI: 10.1021/jacs.7b06431] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electrochemical interface is an ultrathin interfacial region between the electrode surface and the electrolyte solution and is often characterized by numerous dynamic processes, such as solvation and desolvation, heterogeneous electron transfer, molecular adsorption and desorption, diffusion, and surface rearrangement. Many of these processes are driven and modulated by the presence of a large interfacial potential gradient. The study and better understanding of the electrochemical interface is important for designing better electrochemical systems where their applications may include batteries, fuel cells, electrocatalytic water splitting, corrosion protection, and electroplating. This, however, has proved to be a challenging analytical task due to the ultracompact and dynamic evolving nature of the electrochemical interface. Here, we describe the use of an electrochemical nanocell to image the dynamic collision and oxidation process of single silver nanoparticles at the surface of a platinum nanoelectrode. A nanocell is prepared by depositing a platinum nanoparticle at the tip of a quartz nanopipette forming a bipolar nanoelectrode. The compact size of the nanocell confines the motion of the silver nanoparticle in a 1-D space. The highly dynamic process of nanoparticle collision and oxidation is imaged by single-particle fluorescence microscopy. Our results demonstrate that silver nanoparticle collision and oxidation is highly dynamic and likely controlled by a strong electrostatic effect at the electrode/solution interface. We believe that the use of a platinum nanocell and single molecule/nanoparticle fluorescence microscopy can be extended to other systems to yield highly dynamic information about the electrochemical interface.
Collapse
Affiliation(s)
- Rui Hao
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Yunshan Fan
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
20
|
Peljo P, Manzanares JA, Girault HH. Variation of the Fermi level and the electrostatic force of a metallic nanoparticle upon colliding with an electrode. Chem Sci 2017; 8:4795-4803. [PMID: 28959401 PMCID: PMC5602143 DOI: 10.1039/c7sc00848a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022] Open
Abstract
When a metallic nanoparticle (NP) comes in close contact with an electrode, its Fermi level equilibrates with that of the electrode if their separation is less than the cut-off distance for electron tunnelling. In the absence of chemical reactions in solution, the charge on the metallic nanoparticle is constant outside this range before or after the collision. However, the double layer capacitances of both the electrode and the NP are influenced by each other, varying as the function of distance. Because the charge on the nanoparticle is constant, the outer potential of the metallic NP and hence its Fermi level varies as the capacitance changes. This effect is more pronounced for small particles (<10 nm) in diluted supporting electrolyte solutions, especially if the metallic nanoparticle and the electrode have different potentials of zero charge. Nanoparticles were found to be more electrochemically active in the vicinity of the electrode. For example, the outer potential of a positively-polarized 2 nm radius NP was predicted to decrease by 35 mV or 100 mV (depending on the electrostatic model used to describe the electric double layer), when the NP moved from an electrode at 1 V (vs. its pzc) to the bulk. The force between the equilibrated NP and the electrode is always repulsive when they have the same pzc. Otherwise there can be an attraction even when the NP and the electrode carry charges of the same sign, due to the redistibution of surface charge density at both the NP and electrode surface.
Collapse
Affiliation(s)
- Pekka Peljo
- Laboratoire d'Electrochimie Physique et Analytique (LEPA) , École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17 , CH-1951 Sion , Switzerland .
| | - José A Manzanares
- Department of Thermodynamics , Faculty of Physics , University of Valencia , c/Dr. Moliner, 50 , E-46100 Burjasot , Spain
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Analytique (LEPA) , École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17 , CH-1951 Sion , Switzerland .
| |
Collapse
|
21
|
Ustarroz J, Kang M, Bullions E, Unwin PR. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events. Chem Sci 2017; 8:1841-1853. [PMID: 28553474 PMCID: PMC5424807 DOI: 10.1039/c6sc04483b] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Single nanoparticle (NP) electrochemical impacts is a rapidly expanding field of fundamental electrochemistry, with applications from electrocatalysis to electroanalysis. These studies, which involve monitoring the electrochemical (usually current-time, I-t) response when a NP from solution impacts with a collector electrode, have the scope to provide considerable information on the properties of individual NPs. Taking the widely studied oxidative dissolution of individual silver nanoparticles (Ag NPs) as an important example, we present measurements with unprecedented noise (< 5 pA) and time resolution (time constant 100 μs) that are highly revealing of Ag NP dissolution dynamics. Whereas Ag NPs of diameter, d = 10 nm are mostly dissolved in a single event (on the timescale of the measurements), a wide variety of complex processes operate for NPs of larger diameter (d ≥ 20 nm). Detailed quantitative analysis of the I-t features, consumed charge, event duration and impact frequency leads to a major conclusion: Ag NPs undergo sequential partial stripping (oxidative dissolution) events, where a fraction of a NP is electrochemically oxidized, followed by the NP drifting away and back to the tunnelling region before the next partial stripping event. As a consequence, analysis of the charge consumed by single events (so-called "impact coulometry") cannot be used as a general method to determine the size of colloidal NPs. However, a proper analysis of the I-t responses provides highly valuable information on the transient physicochemical interactions between NPs and polarized surfaces.
Collapse
Affiliation(s)
- Jon Ustarroz
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
- Vrije Universiteit Brussel (VUB) , Research Group Electrochemical and Surface Engineering (SURF) , Pleinlaan 2 , 1050 Brussels , Belgium .
| | - Minkyung Kang
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
| | - Erin Bullions
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
| | - Patrick R Unwin
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
| |
Collapse
|
22
|
|
23
|
Brasiliense V, Berto P, Combellas C, Tessier G, Kanoufi F. Electrochemistry of Single Nanodomains Revealed by Three-Dimensional Holographic Microscopy. Acc Chem Res 2016; 49:2049-57. [PMID: 27598333 DOI: 10.1021/acs.accounts.6b00335] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interest in nanoparticles has vigorously increased over the last 20 years as more and more studies show how their use can potentially revolutionize science and technology. Their applications span many different academically and industrially relevant fields such as catalysis, materials science, health, etc. Until the past decade, however, nanoparticle studies mostly relied on ensemble studies, thus leaving aside their chemical heterogeneity at the single particle level. Over the past few years, powerful new tools appeared to probe nanoparticles individually and in situ. This Account describes how we drew inspiration from the emerging fields of nanoelectrochemistry and plasmonics-based high resolution holographic microscopy to develop a coupled approach capable of analyzing in operando (electro)chemical reaction over one single nanoparticle. A brief overview of selected optical strategies to image NPs in situ with emphasis on scattering based methods is presented. In an electrochemical context, it is necessary to track particle behavior both in solution and near a polarized electrode, which is why 3D optical observation is particularly appealing. These approaches are discussed together with strategies to track NPs beyond the diffraction limit, allowing a much finer description of their trajectories. Then, the holographic setup is used to study electrochemically triggered Ag NP oxidation reaction in the presence of different electrolytes. Holography is shown to be a powerful technique to track and analyze the trajectory of individual NPs in situ, which further sheds light on in operando behaviors such as electrogenerated NP transport, aggregation, or adsorption. We then show that spectroscopy and scattering-based optical methods are reliable and sensitive to the point of being used to investigate and quantify NP (electro)chemical reactions in model cases. However, since real chemical reactions usually take place in an inherently complex environment, approaches based exclusively on optical imaging only reach their limitations. The strategy is then taken one step further by merging together electrochemical nanoimpact experiments with 3D optical monitoring. Previous strategies are validated by showing that in simple cases, these two independent ways of probing NP size and reactivity yield the same results. For more complicated reactions (e.g., multistep reactions), one must go beyond either technique by showing that the two approaches are perfectly complementary and that the two signals contain information of different natures, thus providing a much better characterization of the reaction. This point is illustrated by studying Ag NP oxidation (single or agglomerates) in the presence of a precipitating agent, where the actual oxidation is uncoupled from the dissolution of the particle, thus proving the point of our symbiotic approach.
Collapse
Affiliation(s)
- Vitor Brasiliense
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS CNRS UMR 7086, 15 rue Jean de Baïf, F-75013 Paris, France
| | - Pascal Berto
- Université Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics Laboratory CNRS UMR 8250, 45 rue des Saints-Pères, F-75006 Paris, France
| | - Catherine Combellas
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS CNRS UMR 7086, 15 rue Jean de Baïf, F-75013 Paris, France
| | - Gilles Tessier
- Université Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics Laboratory CNRS UMR 8250, 45 rue des Saints-Pères, F-75006 Paris, France
| | - Frédéric Kanoufi
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS CNRS UMR 7086, 15 rue Jean de Baïf, F-75013 Paris, France
| |
Collapse
|