1
|
Whittington C, Sharma A, Hill SG, Iavarone AT, Hoffman BM, Offenbacher AR. Impact of N-Glycosylation on Protein Structure and Dynamics Linked to Enzymatic C-H Activation in the M. oryzae Lipoxygenase. Biochemistry 2024; 63:1335-1346. [PMID: 38690768 PMCID: PMC11587536 DOI: 10.1021/acs.biochem.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.
Collapse
Affiliation(s)
- Chris Whittington
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - S. Gage Hill
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| |
Collapse
|
2
|
Hess KM, Leach IF, Wijtenhorst L, Lee H, Klein JEMN. Valence Tautomerism Induced Proton Coupled Electron Transfer:X-H Bond Oxidation with a Dinuclear Au(II) Hydroxide Complex. Angew Chem Int Ed Engl 2024; 63:e202318916. [PMID: 38324462 DOI: 10.1002/anie.202318916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
We report the preparation and characterization of the dinuclear AuII hydroxide complex AuII 2(L)2(OH)2 (L=N,N'-bis (2,6-dimethyl) phenylformamidinate) and study its reactivity towards weak X-H bonds. Through the interplay of kinetic analysis and computational studies, we demonstrate that the oxidation of cyclohexadiene follows a concerted proton-coupled electron transfer (cPCET) mechanism, a rare type of reactivity for Au complexes. We find that the Au-Au σ-bond undergoes polarization in the PCET event leading to an adjustment of oxidation levels for both Au centers prior to C(sp3)-H bond cleavage. We thus describe the oxidation event as a valence tautomerism-induced PCET where the basicity of one reduced Au-OH unit provides a proton acceptor and the second more oxidized Au center serves as an electron acceptor. The coordination of these events allows for unprecedented radical-type reactivity by a closed shell AuII complex.
Collapse
Affiliation(s)
- Kristopher M Hess
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Isaac F Leach
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Lisa Wijtenhorst
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Hangyul Lee
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| |
Collapse
|
3
|
Guevara L, Gouge M, Ohler A, Hill SG, Patel S, Offenbacher AR. Effect of solvent viscosity on the activation barrier of hydrogen tunneling in the lipoxygenase reaction. Arch Biochem Biophys 2023; 747:109740. [PMID: 37678425 DOI: 10.1016/j.abb.2023.109740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Hydrogen tunneling in enzyme reactions has played an important role in linking protein thermal motions to the chemical steps of catalysis. Lipoxygenases (LOXs) have served as model systems for such reactions, showcasing deep hydrogen tunneling mechanisms associated with enzymatic C-H bond cleavage from polyunsaturated fatty acids. Here, we examined the effect of solvent viscosity on the protein thermal motions associated with LOX catalysis using trehalose and glucose as viscogens. Kinetic analysis of the reaction of the paradigm plant orthologue, soybean lipoxygenase (SLO), with linoleic acid revealed no effect on the first-order rate constants, kcat, or activation energy, Ea. Further studies of SLO active site mutants displaying varying Eas, which have been used to probe catalytically relevant motions, likewise provided no evidence for viscogen-dependent motions. Kinetic analyses were extended to a representative fungal LOX from M. oryzae, MoLOX, and a human LOX, 15-LOX-2. While MoLOX behaved similarly to SLO, we show that viscogens inhibit 15-LOX-2 activity. The latter implicates viscogen sensitive, conformational motions in animal LOX reactions. The data provide insight into the role of water hydration layers in facilitating hydrogen (quantum) tunneling in LOX.
Collapse
Affiliation(s)
- Luis Guevara
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Melissa Gouge
- Department of Chemistry and Biochemistry, Ohio Northern University, Ada, OH, 45810, USA
| | - Amanda Ohler
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - S Gage Hill
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Soham Patel
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
4
|
Sharma A, Whittington C, Jabed M, Hill SG, Kostenko A, Yu T, Li P, Doan PE, Hoffman BM, Offenbacher AR. 13C Electron Nuclear Double Resonance Spectroscopy-Guided Molecular Dynamics Computations Reveal the Structure of the Enzyme-Substrate Complex of an Active, N-Linked Glycosylated Lipoxygenase. Biochemistry 2023; 62:1531-1543. [PMID: 37115010 PMCID: PMC10704959 DOI: 10.1021/acs.biochem.3c00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lipoxygenase (LOX) enzymes produce important cell-signaling mediators, yet attempts to capture and characterize LOX-substrate complexes by X-ray co-crystallography are commonly unsuccessful, requiring development of alternative structural methods. We previously reported the structure of the complex of soybean lipoxygenase, SLO, with substrate linoleic acid (LA), as visualized through the integration of 13C/1H electron nuclear double resonance (ENDOR) spectroscopy and molecular dynamics (MD) computations. However, this required substitution of the catalytic mononuclear, nonheme iron by the structurally faithful, yet inactive Mn2+ ion as a spin probe. Unlike canonical Fe-LOXs from plants and animals, LOXs from pathogenic fungi contain active mononuclear Mn2+ metallocenters. Here, we report the ground-state active-site structure of the native, fully glycosylated fungal LOX from rice blast pathogen Magnaporthe oryzae, MoLOX complexed with LA, as obtained through the 13C/1H ENDOR-guided MD approach. The catalytically important distance between the hydrogen donor, carbon-11 (C11), and the acceptor, Mn-bound oxygen, (donor-acceptor distance, DAD) for the MoLOX-LA complex derived in this fashion is 3.4 ± 0.1 Å. The difference of the MoLOX-LA DAD from that of the SLO-LA complex, 3.1 ± 0.1 Å, is functionally important, although is only 0.3 Å, despite the MoLOX complex having a Mn-C11 distance of 5.4 Å and a "carboxylate-out" substrate-binding orientation, whereas the SLO complex has a 4.9 Å Mn-C11 distance and a "carboxylate-in" substrate orientation. The results provide structural insights into reactivity differences across the LOX family, give a foundation for guiding development of MoLOX inhibitors, and highlight the robustness of the ENDOR-guided MD approach to describe LOX-substrate structures.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Chris Whittington
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Mohammed Jabed
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, United States
| | - S. Gage Hill
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Anastasiia Kostenko
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Tao Yu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, United States
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, United States
| | - Peter E. Doan
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| |
Collapse
|
5
|
Zaragoza JPT, Offenbacher AR, Hu S, Gee CL, Firestein ZM, Minnetian N, Deng Z, Fan F, Iavarone AT, Klinman JP. Temporal and spatial resolution of distal protein motions that activate hydrogen tunneling in soybean lipoxygenase. Proc Natl Acad Sci U S A 2023; 120:e2211630120. [PMID: 36867685 PMCID: PMC10013837 DOI: 10.1073/pnas.2211630120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/27/2023] [Indexed: 03/05/2023] Open
Abstract
The enzyme soybean lipoxygenase (SLO) provides a prototype for deep tunneling mechanisms in hydrogen transfer catalysis. This work combines room temperature X-ray studies with extended hydrogen-deuterium exchange experiments to define a catalytically-linked, radiating cone of aliphatic side chains that connects an active site iron center of SLO to the protein-solvent interface. Employing eight variants of SLO that have been appended with a fluorescent probe at the identified surface loop, nanosecond fluorescence Stokes shifts have been measured. We report a remarkable identity of the energies of activation (Ea) for the Stokes shifts decay rates and the millisecond C-H bond cleavage step that is restricted to side chain mutants within an identified thermal network. These findings implicate a direct coupling of distal protein motions surrounding the exposed fluorescent probe to active site motions controlling catalysis. While the role of dynamics in enzyme function has been predominantly attributed to a distributed protein conformational landscape, the presented data implicate a thermally initiated, cooperative protein reorganization that occurs on a timescale faster than nanosecond and represents the enthalpic barrier to the reaction of SLO.
Collapse
Affiliation(s)
- Jan Paulo T. Zaragoza
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Adam R. Offenbacher
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, East Carolina University, Greenville, NC27858
| | - Shenshen Hu
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Christine L. Gee
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA94720
| | | | - Natalie Minnetian
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Zhenyu Deng
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Flora Fan
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Judith P. Klinman
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA94720
| |
Collapse
|
6
|
Hammes-Schiffer S. Theoretical perspectives on non-Born-Oppenheimer effects in chemistry. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200377. [PMID: 35341306 DOI: 10.1098/rsta.2020.0377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 06/14/2023]
Abstract
The Born-Oppenheimer approximation, which assumes that the electrons respond instantaneously to the motion of the nuclei, breaks down for a wide range of chemical and biological processes. The rate constants of such nonadiabatic processes can be calculated using analytical theories, and the real-time nonequilibrium dynamics can be described using numerical atomistic simulations. The selection of an approach depends on the desired balance between accuracy and efficiency. The computational expense of generating potential energy surfaces on-the-fly often favours the use of approximate, robust and efficient methods such as trajectory surface hopping for large, complex systems. The development of formally exact non-Born-Oppenheimer methods and the exploration of well-defined approximations to such methods are critical for providing benchmarks and preparing for the next generation of faster computers. Thus, the parallel development of rigorous but computationally expensive methods and more approximate but computationally efficient methods is optimal. This Perspective briefly summarizes the available theoretical and computational non-Born-Oppenheimer methods and presents examples illustrating how analytical theories and nonadiabatic dynamics simulations can elucidate the fundamental principles of chemical and biological processes. These examples also highlight how theoretical calculations are able to guide the interpretation of experimental data and provide experimentally testable predictions for nonadiabatic processes. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.
Collapse
|
7
|
Dutra M, McElhenney S, Manley O, Makris T, Rassolov V, Garashchuk S. Modeling the Ligand Effect on the Structure of CYP 450 Within the Density Functional Theory. J Phys Chem A 2022; 126:2818-2824. [PMID: 35500128 DOI: 10.1021/acs.jpca.2c01783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An improved understanding of the P450 structure is relevant to the development of biomimetic catalysts and inhibitors for controlled CH-bond activation, an outstanding challenge of synthetic chemistry. Motivated by the experimental findings of an unusually short Fe-S bond of 2.18 Å for the wild-type (WT) OleT P450 decarboxylase relative to a cysteine pocket mutant form (A369P), a computational model that captures the effect of the thiolate axial ligand on the iron-sulfur distance is presented. With the computational efficiency and streamlined analysis in mind, this model combines a cluster representation of the enzyme─40-110 atoms, depending on the heme and ligand truncation level─with a density functional theory (DFT) description of the electronic structure (ES) and is calibrated against the experimental data. The optimized Fe-S distances show a difference of 0.25 Å between the low and high spin states, in agreement with the crystallographic structures of the OleT WT and mutant forms. We speculate that this difference is attributable to the packing of the ligand; the mutant is bulkier due to an alanine-to-proline replacement, meaning that it is excluded from the energetically favored low-spin minimum because of steric constraints. The presence of pure spin-state pairs and the intersection of the low/high spin states for the enzyme model is indicative of the limitations of single-reference ES methods in such systems and emphasizes the significance of using the proper state when modeling the hydrogen atom transfer (HAT) reaction catalyzed by OleT. At the same time, the correct characterization of both the short and long Fe-S bonds within a small DFT-based model of 42 atoms paves the way for quantum dynamics modeling of the HAT step, which initiates the OleT decarboxylation reaction.
Collapse
Affiliation(s)
- Matthew Dutra
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shannon McElhenney
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Olivia Manley
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Tom Makris
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Vitaly Rassolov
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
8
|
Dutra M, Amaya JA, McElhenney S, Manley OM, Makris TM, Rassolov V, Garashchuk S. Experimental and Theoretical Examination of the Kinetic Isotope Effect in Cytochrome P450 Decarboxylase OleT. J Phys Chem B 2022; 126:3493-3504. [PMID: 35508080 DOI: 10.1021/acs.jpcb.1c10280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a combination of experimental studies, theory, simulation, and modeling, we investigate the hydrogen atom transfer (HAT) reaction by the high-valent ferryl cytochrome P450 (CYP) intermediate known as Compound I, a species that is central to innumerable and important detoxification and biosynthetic reactions. The P450 decarboxylase known as OleT converts fatty acids, a sustainable biological feedstock, into terminal alkenes and thus is of high interest as a potential means to produce fungible biofuels. Previous experimental work has established the intermediacy of Compound I in the C─C scission reaction catalyzed by OleT and an unprecedented ability to monitor the HAT process in the presence of bound fatty acid substrates. Here, we leverage the kinetic simplicity of the OleT system to measure the activation barriers for CYP HAT and the temperature dependence of the substrate 2H kinetic isotope effect. Notably, neither measurement has been previously accessible for a CYP to date. Theoretical analysis alludes to the significance of substrate fatty acid coordination for generating the hydrogen donor/acceptor configurations that are most conducive for HAT to occur. The analysis of the two-dimensional potential energy surface, based on multireference electronic wave functions, illustrates the uncoupled character of the hydrogen motion. Quantum dynamics calculations along the hydrogen reaction path demonstrate that hydrogen tunneling is essential to qualitatively capture the experimental isotope effect, its temperature dependence, and appropriate activation energies. Overall, a more fundamental understanding of the OleT reaction coordinate contributes to the development of biomimetic catalysts for controlled C─H bond activation, an outstanding current challenge for (bio)synthetic chemistry.
Collapse
Affiliation(s)
- Matthew Dutra
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jose A Amaya
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shannon McElhenney
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Olivia M Manley
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas M Makris
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Vitaly Rassolov
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
9
|
Zhang J, Borrelli R, Tanimura Y. Probing photoinduced proton coupled electron transfer process by means of two-dimensional resonant electronic–vibrational spectroscopy. J Chem Phys 2021; 154:144104. [DOI: 10.1063/5.0046755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jiaji Zhang
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Raffaele Borrelli
- DISAFA, University of Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, Italy
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Li P, Soudackov AV, Koronkiewicz B, Mayer JM, Hammes-Schiffer S. Theoretical Study of Shallow Distance Dependence of Proton-Coupled Electron Transfer in Oligoproline Peptides. J Am Chem Soc 2020; 142:13795-13804. [PMID: 32664731 DOI: 10.1021/jacs.0c04716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Long-range electron transfer is coupled to proton transfer in a wide range of chemically and biologically important processes. Recently the proton-coupled electron transfer (PCET) rate constants for a series of biomimetic oligoproline peptides linking Ru(bpy)32+ to tyrosine were shown to exhibit a substantially shallower dependence on the number of proline spacers compared to the analogous electron transfer (ET) systems. The experiments implicated a concerted PCET mechanism involving intramolecular electron transfer from tyrosine to Ru(bpy)33+ and proton transfer from tyrosine to a hydrogen phosphate dianion. Herein these PCET systems, as well as the analogous ET systems, are studied with microsecond molecular dynamics, and the ET and PCET rate constants are calculated with the corresponding nonadiabatic theories. The molecular dynamics simulations illustrate that smaller ET donor-acceptor distances are sampled by the PCET systems than by the analogous ET systems. The shallower dependence of the PCET rate constant on the ET donor-acceptor distance is explained in terms of an additional positive, distance-dependent electrostatic term in the PCET driving force, which attenuates the rate constant at smaller distances. This electrostatic term depends on the change in the electrostatic interaction between the charges on each end of the bridge and can be modified by altering these charges. On the basis of these insights, this theory predicted a less shallow distance dependence of the PCET rate constant when imidazole rather than hydrogen phosphate serves as the proton acceptor, even though their pKa values are similar. This theoretical prediction was subsequently validated experimentally, illustrating that long-range electron transfer processes can be tuned by modifying the nature of the proton acceptor in concerted PCET processes. This level of control has broad implications for the design of more effective charge-transfer systems.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - James M Mayer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Offenbacher AR, Holman TR. Fatty Acid Allosteric Regulation of C-H Activation in Plant and Animal Lipoxygenases. Molecules 2020; 25:molecules25153374. [PMID: 32722330 PMCID: PMC7436259 DOI: 10.3390/molecules25153374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the (per) oxidation of fatty acids that serve as important mediators for cell signaling and inflammation. These reactions are initiated by a C-H activation step that is allosterically regulated in plant and animal enzymes. LOXs from higher eukaryotes are equipped with an N-terminal PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) domain that has been implicated to bind to small molecule allosteric effectors, which in turn modulate substrate specificity and the rate-limiting steps of catalysis. Herein, the kinetic and structural evidence that describes the allosteric regulation of plant and animal lipoxygenase chemistry by fatty acids and their derivatives are summarized.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
- Correspondence:
| | - Theodore R. Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| |
Collapse
|
12
|
Heller ER, Richardson JO. Semiclassical instanton formulation of Marcus–Levich–Jortner theory. J Chem Phys 2020; 152:244117. [DOI: 10.1063/5.0013521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Eric R. Heller
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
13
|
Karković Marković A, Jakobušić Brala C, Pilepić V, Uršić S. Kinetic Isotope Effects and Hydrogen Tunnelling in PCET Oxidations of Ascorbate: New Insights into Aqueous Chemistry? Molecules 2020; 25:molecules25061443. [PMID: 32210039 PMCID: PMC7144389 DOI: 10.3390/molecules25061443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 01/12/2023] Open
Abstract
Recent experimental studies of kinetic isotope effects (KIE-s) and hydrogen tunnelling comprising three proton-coupled electron transfer (PCET) oxidations of ascorbate monoanion, (a) in aqueous reaction solutions, (b) in the mixed water-organic cosolvent systems, (c) in aqueous solutions of various salts and (d) in fairly diluted aqueous solutions of the various partial hydrophobes are reviewed. A number of new insights into the wealth of the kinetic isotope phenomena in the PCET reactions have been obtained. The modulation of KIE-s and hydrogen tunnelling observed when partially hydrophobic solutes are added into water reaction solution, in the case of fairly diluted solutions is revealed as the strong linear correlation of the isotopic ratios of the Arrhenius prefactors Ah/Ad and the isotopic differences in activation energies ΔEa (D,H). The observation has been proposed to be a signature of the involvement of the collective intermolecular excitonic vibrational dynamics of water in activation processes and aqueous chemistry.
Collapse
Affiliation(s)
| | | | | | - Stanko Uršić
- Correspondence: (C.J.B.); (S.U.); Tel.: +385-01-4870-267 (C.J.B.)
| |
Collapse
|
14
|
Offenbacher AR, Sharma A, Doan PE, Klinman JP, Hoffman BM. The Soybean Lipoxygenase-Substrate Complex: Correlation between the Properties of Tunneling-Ready States and ENDOR-Detected Structures of Ground States. Biochemistry 2020; 59:901-910. [PMID: 32022556 PMCID: PMC7188194 DOI: 10.1021/acs.biochem.9b00861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hydrogen tunneling in enzymatic C-H activation requires a dynamical sampling among ground-state enzyme-substrate (E-S) conformations, which transiently generates a tunneling-ready state (TRS). The TRS is characterized by a hydrogen donor-acceptor distance (DAD) of 2.7 Å, ∼0.5 Å shorter than the dominant DAD of optimized ground states. Recently, a high-resolution, 13C electron-nuclear double-resonance (ENDOR) approach was developed to characterize the ground-state structure of the complex of the linoleic acid (LA) substrate with soybean lipoxygenase (SLO). The resulting enzyme-substrate model revealed two ground-state conformers with different distances between the target C11 of LA and the catalytically active cofactor [Fe(III)-OH]: the active conformer "a", with a van der Waals DAD of 3.1 Å between C11 and metal-bound hydroxide, and an inactive conformer "b", with a distance that is almost 1 Å longer. Herein, the structure of the E-S complex is examined for a series of six variants in which subtle structural modifications of SLO have been introduced either at a hydrophobic side chain near the bound substrate or at a remote residue within a protein network whose flexibility influences hydrogen transfer. A remarkable correlation is found between the ENDOR-derived population of the active ground-state conformer a and the kinetically derived differential enthalpic barrier for D versus H transfer, ΔEa, with the latter increasing as the fraction of conformer a decreases. As proposed, ΔEa provides a "ruler" for the DAD within the TRS. ENDOR measurements further corroborate the previous identification of a dynamical network coupling the buried active site of SLO to the surface. This study shows that subtle imperfections within the initial ground-state structures of E-S complexes are accompanied by compromised geometries at the TRS.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
- Department of Chemistry and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, Illinois 602084
| | - Peter E. Doan
- Department of Chemistry, Northwestern University, Evanston, Illinois 602084
| | - Judith P. Klinman
- Department of Chemistry and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 602084
| |
Collapse
|
15
|
Prah A, Ogrin P, Mavri J, Stare J. Nuclear quantum effects in enzymatic reactions: simulation of the kinetic isotope effect of phenylethylamine oxidation catalyzed by monoamine oxidase A. Phys Chem Chem Phys 2020; 22:6838-6847. [DOI: 10.1039/d0cp00131g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using computational techniques for quantizing nuclear motion one can accurately reproduce kinetic isotope effect of enzymatic reactions, as demonstrated for phenylethylamine oxidation catalyzed by the monoamine oxidase A enzyme.
Collapse
Affiliation(s)
- Alja Prah
- Theory Department
- National Institute of Chemistry
- Ljubljana
- Slovenia
- University of Ljubljana
| | - Peter Ogrin
- Theory Department
- National Institute of Chemistry
- Ljubljana
- Slovenia
- University of Ljubljana
| | - Janez Mavri
- Theory Department
- National Institute of Chemistry
- Ljubljana
- Slovenia
| | - Jernej Stare
- Theory Department
- National Institute of Chemistry
- Ljubljana
- Slovenia
| |
Collapse
|
16
|
Laurynėnas A, Butkevičius M, Dagys M, Shleev S, Kulys J. Consecutive Marcus Electron and Proton Transfer in Heme Peroxidase Compound II-Catalysed Oxidation Revealed by Arrhenius Plots. Sci Rep 2019; 9:14092. [PMID: 31575893 PMCID: PMC6773748 DOI: 10.1038/s41598-019-50466-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022] Open
Abstract
Electron and proton transfer reactions in enzymes are enigmatic and have attracted a great deal of theoretical, experimental, and practical attention. The oxidoreductases provide model systems for testing theoretical predictions, applying experimental techniques to gain insight into catalytic mechanisms, and creating industrially important bio(electro)conversion processes. Most previous and ongoing research on enzymatic electron transfer has exploited a theoretically and practically sound but limited approach that uses a series of structurally similar ("homologous") substrates, measures reaction rate constants and Gibbs free energies of reactions, and analyses trends predicted by electron transfer theory. This approach, proposed half a century ago, is based on a hitherto unproved hypothesis that pre-exponential factors of rate constants are similar for homologous substrates. Here, we propose a novel approach to investigating electron and proton transfer catalysed by oxidoreductases. We demonstrate the validity of this new approach for elucidating the kinetics of oxidation of "non-homologous" substrates catalysed by compound II of Coprinopsis cinerea and Armoracia rusticana peroxidases. This study - using the Marcus theory - demonstrates that reactions are not only limited by electron transfer, but a proton is transferred after the electron transfer event and thus both events control the reaction rate of peroxidase-catalysed oxidation of substrates.
Collapse
Affiliation(s)
- Audrius Laurynėnas
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania.
| | - Marius Butkevičius
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| | - Marius Dagys
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| | - Sergey Shleev
- Malmö University, Jan Waldenströmsgata 25, SE-214 28, Malmö, Sweden
| | - Juozas Kulys
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
17
|
Kostenko A, Ray K, Iavarone AT, Offenbacher AR. Kinetic Characterization of the C-H Activation Step for the Lipoxygenase from the Pathogenic Fungus Magnaporthe oryzae: Impact of N-Linked Glycosylation. Biochemistry 2019; 58:3193-3203. [PMID: 31264852 DOI: 10.1021/acs.biochem.9b00467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipoxygenases from pathogenic fungi belong to the lipoxygenase family of enzymes, which catalyze C-H activation of polyunsaturated fatty acids to form a diverse set of cell-signaling hydroperoxides. While the lipoxygenase catalytic domains are structurally and functionally similar, these fungal enzymes are decorated with N-linked glycans. The impact of N-linked glycans on the structure and function of these enzymes remains largely unknown. One exemplary system is MoLOX, a lipoxygenase from the fungus Magnaporthe oryzae, that is emerging as an important target for the devastating rice blast disease. Herein, we demonstrate that hydrogen transfer, associated with C-H cleavage of the substrate linoleic acid by MoLOX, is rate-determining and occurs by a hydrogen tunneling mechanism. Using the differential enthalpic barrier for hydrogen and deuterium transfer, ΔEa, as a kinetic reporter of tunneling efficiency, a disproportionate increase in the activation energy for deuterium transfer is observed upon treatment of MoLOX with a peptide:N-glycosidase that cleaves N-linked carbohydrates from the protein. This increased ΔEa is consistent with an impairment of substrate positioning in the enzyme-substrate complex for both the tunneling ready state and the ground state. These results provide new insight into the functional consequences of N-linked glycosylation on lipoxygenase C-H activation and have important implications for MoLOX inhibitor design.
Collapse
Affiliation(s)
- Anastasiia Kostenko
- Department of Chemistry , East Carolina University , Greenville , North Carolina 27858 , United States
| | - Katherine Ray
- Department of Biology , East Carolina University , Greenville , North Carolina 27858 , United States
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences (QB3) , University of California , Berkeley , California 94720 , United States
| | - Adam R Offenbacher
- Department of Chemistry , East Carolina University , Greenville , North Carolina 27858 , United States
| |
Collapse
|
18
|
Hu S, Offenbacher AR, Thompson EM, Gee CL, Wilcoxen J, Carr CAM, Prigozhin DM, Yang V, Alber T, Britt RD, Fraser JS, Klinman J. Biophysical Characterization of a Disabled Double Mutant of Soybean Lipoxygenase: The "Undoing" of Precise Substrate Positioning Relative to Metal Cofactor and an Identified Dynamical Network. J Am Chem Soc 2019; 141:1555-1567. [PMID: 30645119 PMCID: PMC6353671 DOI: 10.1021/jacs.8b10992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Soybean lipoxygenase (SLO) has served as a prototype for understanding the molecular origin of enzymatic rate accelerations. The double mutant (DM) L546A/L754A is considered a dramatic outlier, due to the unprecedented size and near temperature-independence of its primary kinetic isotope effect, low catalytic efficiency, and elevated enthalpy of activation. To uncover the physical basis of these features, we herein apply three structural probes: hydrogen-deuterium exchange mass spectrometry, room-temperature X-ray crystallography and EPR spectroscopy on four SLO variants (wild-type (WT) enzyme, DM, and the two parental single mutants, L546A and L754A). DM is found to incorporate features of each parent, with the perturbation at position 546 predominantly influencing thermally activated motions that connect the active site to a protein-solvent interface, while mutation at position 754 disrupts the ligand field and solvation near the cofactor iron. However, the expanded active site in DM leads to more active site water molecules and their associated hydrogen bond network, and the individual features from L546A and L754A alone cannot explain the aggregate kinetic properties for DM. Using recently published QM/MM-derived ground-state SLO-substrate complexes for WT and DM, together with the thorough structural analyses presented herein, we propose that the impairment of DM is the combined result of a repositioning of the reactive carbon of linoleic acid substrate with regard to both the iron cofactor and a catalytically linked dynamic region of protein.
Collapse
Affiliation(s)
- Shenshen Hu
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Adam R. Offenbacher
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Department of Chemistry, East Carolina University, Greenville, NC 27858
| | - Erin M. Thompson
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, California 94158, United States
| | - Christine L. Gee
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Jarett Wilcoxen
- Department of Chemistry, University of California, Davis, California 95695, United States
| | - Cody A. M. Carr
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Daniil M. Prigozhin
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Vanessa Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tom Alber
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - R. David Britt
- Department of Chemistry, University of California, Davis, California 95695, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, California 94158, United States
| | - Judith Klinman
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Klinman JP, Offenbacher AR. Understanding Biological Hydrogen Transfer Through the Lens of Temperature Dependent Kinetic Isotope Effects. Acc Chem Res 2018; 51:1966-1974. [PMID: 30152685 DOI: 10.1021/acs.accounts.8b00226] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hydrogen atom transfer (HAT) is a salient feature of many enzymatic C-H cleavage mechanisms. In systems where kinetic isolation of HAT is achieved, selective labeling of substrate with hydrogen isotopes, such as deuterium, enables the determination of intrinsic kinetic isotope effects (KIEs). While the magnitude of the KIE is itself informative, ultimately the size of the temperature dependence of the KIE, Δ Ea = Ea(D) - Ea(H), serves as a critical, and often misinterpreted (or even ignored) descriptor of the reaction coordinate. As will be highlighted in this Account, Δ Ea is one of the most robust parameters to emerge from studies of enzyme catalyzed hydrogen transfer. Kinetic parameters for C-H reactions via HAT can appear consistent with either classical "over-the-barrier" or "Bell-like tunneling correction" models. However, neither of these models is able to explain the observation of near-zero Δ Ea values with many native enzymes that increase upon extrinsic or intrinsic perturbations to function. Instead, a full tunneling model has been developed that can account for the aggregate trends in the temperature dependence of the KIE. This model is reminiscent of Marcus-like theory for electron tunneling, with the additional incorporation of an H atom donor-acceptor distance (DAD) sampling term for effective wave function overlap; the role of the latter term is manifested in the experimentally determined Δ Ea. Three enzyme systems from this laboratory that illustrate different aspects of HAT are presented: taurine dioxygenase, the dual copper β-monooxygenases, and soybean lipoxygenase (SLO). The latter provides a particularly compelling system for understanding the properties of hydrogen tunneling, showing systematic increases in Δ Ea upon reduction in the size of hydrophobic residues both proximal and distal from the active site iron cofactor. Of note, recent ENDOR-based studies of enzyme-substrate complexes with SLO indicate an increase in DAD for mutants with increased Δ Ea, observations that are inconsistent with "Bell-like correction" models. Overall, the surmounting kinetic and biophysical evidence corroborates a multidimensional approach for understanding HAT, offering a robust mechanistic explanation for the magnitude and trends of the KIE and Δ Ea. Recent DFT and QM/MM computations on SLO are compared to the developed nonadiabatic analytical constructs, providing considerable insight into ground state structures and reactivity. However, QM/MM is unable to readily reproduce the small Δ Ea values characteristic of native enzymes. Future theoretical developments to capture these experimental observations may necessitate a parsing of protein motions for local, substrate deuteration-sensitive modes from isotope-insensitive modes within the larger conformational landscape, in the process providing deeper understanding of how native enzymes have evolved to transiently optimize their active site configurations.
Collapse
Affiliation(s)
- Judith P. Klinman
- Department of Chemistry, Department of Molecular and Cell Biology and California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Adam R. Offenbacher
- Department of Chemistry, Department of Molecular and Cell Biology and California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
20
|
Gillet N, Elstner M, Kubař T. Coupled-perturbed DFTB-QM/MM metadynamics: Application to proton-coupled electron transfer. J Chem Phys 2018; 149:072328. [PMID: 30134697 DOI: 10.1063/1.5027100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new concept of free energy calculations of chemical reactions by means of extended sampling molecular dynamics simulations. Biasing potentials are applied on partial atomic charges, which may be combined with atomic coordinates either in a single collective variable or in multi-dimensional biasing simulations. The necessary additional gradients are obtained by solving coupled-perturbed equations within the approximative density-functional tight-binding method. The new computational scheme was implemented in a combination of Gromacs and Plumed. As a prospective application, proton-coupled electron transfer in a model molecular system is studied. Two collective variables are introduced naturally, one for the proton transfer and the other for the electron transfer. The results are in qualitative agreement with the extended free simulations performed for reference. Free energy minima as well as the mechanism of the process are identified correctly, while the topology of the transition region and the height of the energy barrier are only reproduced qualitatively. The application also illustrates possible difficulties with the new methodology. These may be inefficient sampling of spatial coordinates when atomic charges are biased exclusively and a decreased stability of the simulations. Still, the new approach represents a viable alternative for free energy calculations of a certain class of chemical reactions, for instance a proton-coupled electron transfer in proteins.
Collapse
Affiliation(s)
- Natacha Gillet
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Li P, Soudackov AV, Hammes-Schiffer S. Fundamental Insights into Proton-Coupled Electron Transfer in Soybean Lipoxygenase from Quantum Mechanical/Molecular Mechanical Free Energy Simulations. J Am Chem Soc 2018; 140:3068-3076. [PMID: 29392938 PMCID: PMC5849423 DOI: 10.1021/jacs.7b13642] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The proton-coupled electron transfer (PCET) reaction catalyzed by soybean lipoxygenase has served as a prototype for understanding hydrogen tunneling in enzymes. Herein this PCET reaction is studied with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The free energy surfaces are computed as functions of the proton donor-acceptor (C-O) distance and the proton coordinate, and the potential of mean force is computed as a function of the C-O distance, inherently including anharmonicity. The simulation results are used to calculate the kinetic isotope effects for the wild-type enzyme (WT) and the L546A/L754A double mutant (DM), which have been measured experimentally to be ∼80 and ∼700, respectively. The PCET reaction is found to be exoergic for WT and slightly endoergic for the DM, and the equilibrium C-O distance for the reactant is found to be ∼0.2 Å greater for the DM than for WT. The larger equilibrium distance for the DM, which is due mainly to less optimal substrate binding in the expanded binding cavity, is primarily responsible for its higher kinetic isotope effect. The calculated potentials of mean force are anharmonic and relatively soft at shorter C-O distances, allowing efficient thermal sampling of the shorter distances required for effective hydrogen tunneling. The primarily local electrostatic field at the transferring hydrogen is ∼100 MV/cm in the direction to facilitate proton transfer and increases dramatically as the C-O distance decreases. These simulations suggest that the overall protein environment is important for conformational sampling of active substrate configurations aligned for proton transfer, but the PCET reaction is influenced primarily by local electrostatic effects that facilitate conformational sampling of shorter proton donor-acceptor distances required for effective hydrogen tunneling.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Ave, Urbana, Illinois 61801; Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Alexander V. Soudackov
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Ave, Urbana, Illinois 61801; Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Ave, Urbana, Illinois 61801; Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| |
Collapse
|
22
|
Vaughn MB, Zhang J, Spiro TG, Dyer RB, Klinman JP. Activity-Related Microsecond Dynamics Revealed by Temperature-Jump Förster Resonance Energy Transfer Measurements on Thermophilic Alcohol Dehydrogenase. J Am Chem Soc 2018; 140:900-903. [PMID: 29323490 DOI: 10.1021/jacs.7b12369] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies of a thermophilic alcohol dehydrogenase (ht-ADH) demonstrated a range of discontinuous transitions at 30 °C that include catalysis, kinetic isotope effects, protein hydrogen-deuterium exchange rates, and intrinsic fluorescence properties. Using the Förster resonance energy transfer response from a Trp-NADH donor-acceptor pair in T-jump studies of ht-ADH, we now report microsecond protein motions that can be directly related to active site chemistry. Two distinctive transients are observed: a slow, kinetic process lacking a temperature break, together with a faster transient that is only detectable above 30 °C. The latter establishes a link between enzyme activity and microsecond protein motions near the cofactor binding site, in a region distinct from a previously detected protein network that communicates with the substrate binding site. Though evidence of direct dynamical links between microsecond protein motions and active site bond cleavage events is extremely rare, these studies highlight the potential of T-jump measurements to uncover such properties.
Collapse
Affiliation(s)
- Morgan B Vaughn
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | | | - Thomas G Spiro
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | | |
Collapse
|
23
|
Klinman JP, Offenbacher AR, Hu S. Origins of Enzyme Catalysis: Experimental Findings for C-H Activation, New Models, and Their Relevance to Prevailing Theoretical Constructs. J Am Chem Soc 2017; 139:18409-18427. [PMID: 29244501 PMCID: PMC5812730 DOI: 10.1021/jacs.7b08418] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme's overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.
Collapse
Affiliation(s)
- Judith P Klinman
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Adam R Offenbacher
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Shenshen Hu
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| |
Collapse
|
24
|
Pierre S, Duke JR, Hele TJH, Ananth N. A mapping variable ring polymer molecular dynamics study of condensed phase proton-coupled electron transfer. J Chem Phys 2017; 147:234103. [DOI: 10.1063/1.4986517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Sadrach Pierre
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Jessica R. Duke
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Timothy J. H. Hele
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
25
|
Jevtic S, Anders J. A qualitative quantum rate model for hydrogen transfer in soybean lipoxygenase. J Chem Phys 2017; 147:114108. [PMID: 28938801 DOI: 10.1063/1.4998941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The hydrogen transfer reaction catalysed by soybean lipoxygenase (SLO) has been the focus of intense study following observations of a high kinetic isotope effect (KIE). Today high KIEs are generally thought to indicate departure from classical rate theory and are seen as a strong signature of tunnelling of the transferring particle, hydrogen or one of its isotopes, through the reaction energy barrier. In this paper, we build a qualitative quantum rate model with few free parameters that describes the dynamics of the transferring particle when it is exposed to energetic potentials exerted by the donor and the acceptor. The enzyme's impact on the dynamics is modelled by an additional energetic term, an oscillatory contribution known as "gating." By varying two key parameters, the gating frequency and the mean donor-acceptor separation, the model is able to reproduce well the KIE data for SLO wild-type and a variety of SLO mutants over the experimentally accessible temperature range. While SLO-specific constants have been considered here, it is possible to adapt these for other enzymes.
Collapse
Affiliation(s)
- S Jevtic
- Department of Mathematics, Huxley Building, Imperial College, London SW7 2AZ, United Kingdom
| | - J Anders
- CEMPS, Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| |
Collapse
|
26
|
Ching WM, Zhou A, Klein JEMN, Fan R, Knizia G, Cramer CJ, Guo Y, Que L. Characterization of the Fleeting Hydroxoiron(III) Complex of the Pentadentate TMC-py Ligand. Inorg Chem 2017; 56:11129-11140. [DOI: 10.1021/acs.inorgchem.7b01459] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gerald Knizia
- Department
of Chemistry, Pennsylvania State University, 401A Chemistry Bldg; University Park, Pennsylvania 16802, United States
| | | | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | |
Collapse
|
27
|
Offenbacher AR, Hu S, Poss EM, Carr CAM, Scouras AD, Prigozhin DM, Iavarone AT, Palla A, Alber T, Fraser JS, Klinman JP. Hydrogen-Deuterium Exchange of Lipoxygenase Uncovers a Relationship between Distal, Solvent Exposed Protein Motions and the Thermal Activation Barrier for Catalytic Proton-Coupled Electron Tunneling. ACS CENTRAL SCIENCE 2017; 3:570-579. [PMID: 28691068 PMCID: PMC5492416 DOI: 10.1021/acscentsci.7b00142] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Indexed: 05/11/2023]
Abstract
Defining specific pathways for efficient heat transfer from protein-solvent interfaces to their active sites represents one of the compelling and timely challenges in our quest for a physical description of the origins of enzyme catalysis. Enzymatic hydrogen tunneling reactions constitute excellent systems in which to validate experimental approaches to this important question, given the inherent temperature independence of quantum mechanical wave function overlap. Herein, we present the application of hydrogen-deuterium exchange coupled to mass spectrometry toward the spatial resolution of protein motions that can be related to an enzyme's catalytic parameters. Employing the proton-coupled electron transfer reaction of soybean lipoxygenase as proof of principle, we first corroborate the impact of active site mutations on increased local flexibility and, second, uncover a solvent-exposed loop, 15-34 Å from the reactive ferric center whose temperature-dependent motions are demonstrated to mirror the enthalpic barrier for catalytic C-H bond cleavage. A network that connects this surface loop to the active site is structurally identified and supported by changes in kinetic parameters that result from site-specific mutations.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Shenshen Hu
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Erin M. Poss
- Department
of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, California 94158, United States
| | - Cody A. M. Carr
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Alexander D. Scouras
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Daniil M. Prigozhin
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Ali Palla
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tom Alber
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - James S. Fraser
- Department
of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, California 94158, United States
| | - Judith P. Klinman
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- E-mail:
| |
Collapse
|
28
|
Salna B, Benabbas A, Russo D, Champion PM. Tunneling Kinetics and Nonadiabatic Proton-Coupled Electron Transfer in Proteins: The Effect of Electric Fields and Anharmonic Donor–Acceptor Interactions. J Phys Chem B 2017. [DOI: 10.1021/acs.jpcb.7b05570] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Bridget Salna
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| | - Abdelkrim Benabbas
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| | - Douglas Russo
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| | - Paul M. Champion
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
29
|
Hu S, Soudackov AV, Hammes-Schiffer S, Klinman JP. Enhanced Rigidification within a Double Mutant of Soybean Lipoxygenase Provides Experimental Support for Vibronically Nonadiabatic Proton-Coupled Electron Transfer Models. ACS Catal 2017; 7:3569-3574. [PMID: 29250456 PMCID: PMC5724529 DOI: 10.1021/acscatal.7b00688] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Indexed: 01/20/2023]
Abstract
Soybean lipoxygenase (SLO) is a prototype for nonadiabatic hydrogen tunneling reactions and, as such, has served as the subject of numerous theoretical studies. In this work, we report a nearly temperature-independent kinetic isotope effect (KIE) with an average KIE value of 661 ± 27 for a double mutant (DM) of SLO at six temperatures. The data are well-reproduced within a vibronically nonadiabatic proton-coupled electron transfer model in which the active site has become rigidified compared to wild-type enzyme and single-site mutants. A combined temperature-pressure perturbation further shows that temperature-dependent global motions within DM-SLO are more resistant to perturbation by elevated pressure. These findings provide strong experimental support for the model of hydrogen tunneling in SLO, where optimization of both local protein and ligand motions and distal conformational rearrangements is a prerequisite for effective proton vibrational wave function overlap between the substrate and the active-site iron cofactor.
Collapse
Affiliation(s)
- Shenshen Hu
- Department of Chemistry, Department of Molecular and Cell Biology, and California Institute
for Quantitative Biosciences, University
of California, Berkeley, California 94720, United States
| | - Alexander V. Soudackov
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Judith P. Klinman
- Department of Chemistry, Department of Molecular and Cell Biology, and California Institute
for Quantitative Biosciences, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Abstract
Theoretical design of effective catalysts, in conjunction with the identification of guiding design principles and strategies, is a Holy Grail in Chemistry. Although further progress will benefit from additional computational advances, theoretical studies have already enhanced the design of molecular electrocatalysts, photocatalysts, and enzymes.
Collapse
Affiliation(s)
- Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Salna B, Benabbas A, Champion PM. Proton-Coupled Electron Transfer and the “Linear Approximation” for Coupling to the Donor–Acceptor Distance Fluctuations. J Phys Chem A 2017; 121:2199-2207. [DOI: 10.1021/acs.jpca.7b00539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bridget Salna
- Department of Physics and
Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| | - Abdelkrim Benabbas
- Department of Physics and
Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| | - Paul M. Champion
- Department of Physics and
Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Horitani M, Offenbacher AR, Carr CAM, Yu T, Hoeke V, Cutsail GE, Hammes-Schiffer S, Klinman JP, Hoffman BM. 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling. J Am Chem Soc 2017; 139:1984-1997. [PMID: 28121140 PMCID: PMC5322796 DOI: 10.1021/jacs.6b11856] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 12/20/2022]
Abstract
In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn2+ as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. 13C ENDOR then reveals the locations of 13C10 and reactive 13C11 of linoleic acid relative to the metal; 1H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.
Collapse
Affiliation(s)
- Masaki Horitani
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Cody A. Marcus Carr
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Tao Yu
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Veronika Hoeke
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George E. Cutsail
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Judith P. Klinman
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|