1
|
Addo EO, Wild S, Yousefi A, Fahmy AR, Jekle M. Insights into the material and 3D printing behaviour of fiber-enriched protein gels. Food Res Int 2025; 203:115873. [PMID: 40022391 DOI: 10.1016/j.foodres.2025.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
One of the widely used materials in food printing is soy protein isolate (SPI) due to its functional and nutritional properties. However, a major printing drawback of SPI gels is network brittleness due to extensive aggregation leading to rheological properties that are unsuitable for printing. In this study, 0.4 %, 0.8 %, 1.2 %, 1.6 % and 2.0 % w/w milled psyllium husk and apple fibers were integrated into 20 % w/w SPI inks to improve the network properties and printability. Microstructural, textural, rheological properties and printability were investigated by microscopy, texture profile analysis, rheometry and image analysis. Incorporating psyllium husk fibers resulted in an interpenetrating protein-fiber network. This led to an increase in the network strength from 2155.8 Pa to 4228.15 Pa, relative to soy protein inks only, making them less susceptible to deformation during extrusion. Additionally, the geometrical deviation of the printed cubes decreased from 37.00 ± 4.55 % (length) and 24.00 ± 4.45 % (height) in the control inks to 13.86 ± 1.61 % and 24.86 ± 3.17 % respectively at psyllium husk concentration of 2.0 w/w %. The results showed that psyllium husk improved ink flexibility due to the high water-holding capacity of the fibers while maintaining structural integrity. This study revealed that the interpenetrating network effect of soluble dietary fibers in SPI inks improved printability while apple fibers with a high fraction of insoluble fibers embedded in a soy protein ink network caused printing defects. The findings highlight the potential to understand the influence of dietary fiber with varying physicochemical properties on 3D food printing of protein inks.
Collapse
Affiliation(s)
- Esther Owusuaa Addo
- University of Hohenheim, Department of Plant-based Foods, Institute of Food Science and Biotechnology, Department of Plant-based Foods, University of Hohenheim 70599 Stuttgart, Germany
| | - Sarah Wild
- University of Hohenheim, Department of Plant-based Foods, Institute of Food Science and Biotechnology, Department of Plant-based Foods, University of Hohenheim 70599 Stuttgart, Germany
| | - Alireza Yousefi
- University of Bonab, Department of Chemical Engineering, 55513-95133, Bonab, Iran
| | - Ahmed Raouf Fahmy
- University of Hohenheim, Department of Plant-based Foods, Institute of Food Science and Biotechnology, Department of Plant-based Foods, University of Hohenheim 70599 Stuttgart, Germany
| | - Mario Jekle
- University of Hohenheim, Department of Plant-based Foods, Institute of Food Science and Biotechnology, Department of Plant-based Foods, University of Hohenheim 70599 Stuttgart, Germany.
| |
Collapse
|
2
|
Wang J, Li X, McClements DJ, Ji H, Jin Z, Qiu C. Preparation of protein-based aerogels and regulation and application of their absorption properties: a review. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39644487 DOI: 10.1080/10408398.2024.2434964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Challenges still persist in the preparation of healthy foods through the structuring of liquid oils, and the encapsulation and delivery of functional components. However, protein-based aerogels (PAs) with unique nutritional and health properties as well as various kinds of tunable absorption properties hold promise for solving these problems. In this review, the methods and characteristics of aerogels prepared from various animal and plant proteins were reviewed. In addition, considering the satisfactory structure of amyloid and its outstanding gelation and absorption properties, we proposed accelerating the development of amyloid aerogels in the future. Then, the relationship between their microstructure (specific surface area, pore characteristics, and stability) and absorption properties was discussed. The methods of regulating the absorption properties of PA by hydrogel preparation process, drying technology and surface coating were also emphasized. Finally, we summarized the research advances in PAs for liquid oil structuring and functional ingredient delivery, and provided an outlook for PAs development. The selection of suitable proteins and effective regulation of absorption properties are crucial considerations for improving the applicability of PAs. This review serves as a theoretical reference for the development of healthy, multifunctional and practicable PAs and their products.
Collapse
Affiliation(s)
- Jilong Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | | | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Guo Y, Xia X, Shi Y, Ying Y, Men H. Olfactory EEG induced by odor: Used for food identification and pleasure analysis. Food Chem 2024; 455:139816. [PMID: 38816280 DOI: 10.1016/j.foodchem.2024.139816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
As the need for food authenticity verification increases, sensory evaluation of food odors has become widely recognized. This study presents a theory based on electroencephalography (EEG) to create an Olfactory Perception Dimensional Space (EEG-OPDS), using feature engineering and ensemble learning to establish material and emotional spaces based on odor perception and pleasure. The study examines the intrinsic connection between these two spaces and explores the mechanisms of integration and differentiation in constructing the OPDS. This method effectively visualizes various types of food odors while identifying their perceptual intensity and pleasantness. The average classification accuracy for odor recognition in an eight-category experiment is 96.1%. Conversely, the average classification accuracy for sensory pleasantness recognition in a two-category experiment is 98.8%. The theoretical approach proposed in this study, based on olfactory EEG signals to construct an OPDS, captures the subtle perceptual differences and individualized pleasantness responses to food odors.
Collapse
Affiliation(s)
- Yuchen Guo
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; Bionic Sensing and Pattern Recognition Research Team, Northeast Electric Power University, Jilin 132012, China.
| | - Xiuxin Xia
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; Bionic Sensing and Pattern Recognition Research Team, Northeast Electric Power University, Jilin 132012, China.
| | - Yan Shi
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; Bionic Sensing and Pattern Recognition Research Team, Northeast Electric Power University, Jilin 132012, China
| | - Yuxiang Ying
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Hong Men
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China.
| |
Collapse
|
4
|
Qiu S, Han H, Zeng H, Wang B. Machine learning based classification of yogurt aroma types with flavoromics. Food Chem 2024; 438:138008. [PMID: 37992604 DOI: 10.1016/j.foodchem.2023.138008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Traditional sensory evaluation, relying on human assessors, is vulnerable to subjective error and lacks automation. Nonetheless, the complexity of human sensation makes it challenging to develop a computational method in place of human sensory evaluation. To tackle this challenge, this study constructed logistic regression classification models that could predict yogurt aroma types based on aroma-active compound concentrations with high classification accuracy (AUC ROC > 0.8). Furthermore, indicator compounds discovered from feature importance analysis of classification models led to the derivation of classification criteria of yogurt aroma types. Through constructing and analyzing machine learning models on yogurt aroma types, this study provides an automated pipeline to monitor sensory properties of yogurts.
Collapse
Affiliation(s)
- Sizhe Qiu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Department of Engineering Science, University of Oxford, OX1 3PJ, United Kingdom
| | - Haoying Han
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Hong Zeng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; National Center of Technology Innovation for Dairy, China.
| | - Bei Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
5
|
Sözeri Atik D, Öztürk Hİ, Akın N. Perspectives on the yogurt rheology. Int J Biol Macromol 2024; 263:130428. [PMID: 38403217 DOI: 10.1016/j.ijbiomac.2024.130428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
The oral processing of yogurt is a dynamic process involving a series of deformation processes. Rheological knowledge is essential to understand the structure and flow properties of yogurt in the mouth and to explore its relationship with sensory perception. Yogurt is rheologically characterized as a non-Newtonian viscoelastic material. The rheological properties of yogurt are affected by many factors, from production to consumption. Therefore, rheological measurements are widely used to predict and control the final quality and structure of yogurts. Recent studies focus on the elucidation of the effects of cultures and processes used in production, as well as the design of different formulations to improve the rheological properties of yogurts. Moreover, the science of tribology, which dominates the surface properties of interacting substances in relative motion to evaluate the structural sensation in the later stages of eating in addition to the rheological properties that give the feeling of structure in the early stages of eating, has also become the focus of recent studies. For a detailed comprehension of the rheological properties of yogurt, this review deals with the factors affecting the rheology of yogurt, analytical methods used to determine rheological properties, microstructural and rheological characterization of yogurt, and tribological evaluations.
Collapse
Affiliation(s)
- Didem Sözeri Atik
- Tekirdağ Namık Kemal University, Department of Food Engineering, Tekirdağ, Turkey; University of Wisconsin-Madison, Department of Food Science, Madison, WI, USA.
| | - Hale İnci Öztürk
- Konya Food and Agriculture University, Department of Food Engineering, Konya, Turkey
| | - Nihat Akın
- Selçuk University, Department of Food Engineering, Konya, Turkey
| |
Collapse
|
6
|
Gonzalez-Estanol K, Pedrotti M, Fontova-Cerdà M, Khomenko I, Biasioli F, Stieger M. Influence of Chewing Rate and Food Composition on in Vivo Aroma Release and Perception of Composite Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6723-6734. [PMID: 38478988 PMCID: PMC10979429 DOI: 10.1021/acs.jafc.3c09346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
This study investigated the effects of chewing rate and food composition on in vivo aroma release and perception of composite foods. Bread or sponge cake paired with varying sugar content and viscosity strawberry jams, spiked with citral and limonene, were examined. In-nose release was characterized using Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometry (PTR-ToF-MS). Simultaneously, Time-Intensity (TI) profiling assessed citrus aroma perception (n = 8, triplicate) while fast and slow chewing protocols were applied (fast: 1.33 chews/s; slow 0.66 chews/s; each for 25 s). Chewing rate did not significantly impact the area under the curve and maximum intensity of in vivo citral and limonene release and citrus aroma perception. Faster chewing rates significantly decreased the time to reach maximum intensity of aroma release (p < 0.05) and citrus aroma perception (p < 0.001). Faster chewing rates probably accelerated structural breakdown, inducing an earlier aroma release and perception without affecting aroma intensity. Adding carriers to jams significantly (p < 0.05) increased aroma release, while perceived citrus aroma intensity significantly (p < 0.05) decreased regardless of chewing rate. In conclusion, chewing rate affects the temporality of in vivo aroma release and perception without affecting its intensity, and carrier addition increases in vivo aroma release while diminishing aroma perception.
Collapse
Affiliation(s)
- Karina Gonzalez-Estanol
- Research
and Innovation Centre, Edmund Mach Foundation, 38098 San Michele
All’Adige (TN), Italy
- Food
Quality and Design, Wageningen University, 6708 WG Wageningen, The Netherlands
- Department
of Agri-Food and Environmental Sciences, Trento University, I-38123 Trento, Italy
| | - Michele Pedrotti
- Research
and Innovation Centre, Edmund Mach Foundation, 38098 San Michele
All’Adige (TN), Italy
| | - Mònica Fontova-Cerdà
- Food
Quality and Design, Wageningen University, 6708 WG Wageningen, The Netherlands
| | - Iuliia Khomenko
- Research
and Innovation Centre, Edmund Mach Foundation, 38098 San Michele
All’Adige (TN), Italy
| | - Franco Biasioli
- Research
and Innovation Centre, Edmund Mach Foundation, 38098 San Michele
All’Adige (TN), Italy
| | - Markus Stieger
- Food
Quality and Design, Wageningen University, 6708 WG Wageningen, The Netherlands
- Division
of Human Nutrition and Health, Wageningen
University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
7
|
Bongianino NF, Steffolani ME, Rodríguez MD, Bustos MC, Biasutti CA, León AE. Assessment of Technological and Sensory Properties, Digestibility, and Bioactive Compounds in Polentas from Different Maize Genotypes. Foods 2024; 13:590. [PMID: 38397566 PMCID: PMC10888072 DOI: 10.3390/foods13040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The sensory profile of polenta and the connections between technological attributes and varieties of maize have not been extensively studied. Thus, it is necessary to understand the possible effect of its consumption on consumers' health in terms of postprandial glucose levels and molecules associated with healthy activities. This work aims to study polenta's technological and sensory properties from different maize genotypes and evaluate their digestibility and the potential contribution of bioactive compounds on health. A commercial hybrid, two open-pollinated varieties, and three inbred lines were used. Grain physical determinations and physical-chemical semolina traits were determined. Polenta's technological quality was evaluated after simulated cooking. In vitro digestion was performed for polentas, and a sensory evaluation test was conducted. A significant correlation was found between semolina polyphenols and rapidly digestible starch (r = -0.6). Panellists characterised the genotype C6006 as having a good flavour, sandier mouthfeel, and low consistency. Also, the polenta from the hybrid exhibited sensory attributes more closely resembling commercial polenta in terms of maize odour, flavour, and consistency. The higher content of polyphenols presents in semolina affected the digestion of polenta, showing a lower proportion of rapidly digestible starch and a lower amount of bioaccessible protein fraction.
Collapse
Affiliation(s)
- Nicolás Francisco Bongianino
- Córdoba Food Science and Technology Institute (ICYTAC), National Scientific and Technical, Research Council (CONICET), National University of Cordoba (UNC), Córdoba 5000, Argentina; (N.F.B.); (M.E.S.); (M.C.B.)
- Plant Breeding, College of Agricultural Sciences, National University of Córdoba, CC 509, Córdoba 5000, Argentina;
| | - María Eugenia Steffolani
- Córdoba Food Science and Technology Institute (ICYTAC), National Scientific and Technical, Research Council (CONICET), National University of Cordoba (UNC), Córdoba 5000, Argentina; (N.F.B.); (M.E.S.); (M.C.B.)
- Biological Chemistry, College of Agricultural Sciences, National University of Córdoba, CC 509, Córdoba 5000, Argentina
| | | | - Mariela Cecilia Bustos
- Córdoba Food Science and Technology Institute (ICYTAC), National Scientific and Technical, Research Council (CONICET), National University of Cordoba (UNC), Córdoba 5000, Argentina; (N.F.B.); (M.E.S.); (M.C.B.)
| | - Carlos Alberto Biasutti
- Plant Breeding, College of Agricultural Sciences, National University of Córdoba, CC 509, Córdoba 5000, Argentina;
| | - Alberto Edel León
- Córdoba Food Science and Technology Institute (ICYTAC), National Scientific and Technical, Research Council (CONICET), National University of Cordoba (UNC), Córdoba 5000, Argentina; (N.F.B.); (M.E.S.); (M.C.B.)
- Biological Chemistry, College of Agricultural Sciences, National University of Córdoba, CC 509, Córdoba 5000, Argentina
| |
Collapse
|
8
|
Katrine Laursen A, Bue Dyrnø S, Steven Mikkelsen K, Pawel Czaja T, Albert Maria Rovers T, Ipsen R, Ahrné L. Effect of coagulation temperature on cooking integrity of heat and acid-induced milk gels. Food Res Int 2023; 169:112846. [PMID: 37254420 DOI: 10.1016/j.foodres.2023.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Heat and acid-induced milk gels do not melt or flow upon heating and thus show great potential as a dairy-based protein source for cooking, e.g. for stews. Understanding how processing, e.g. acidification, affects the cooking behavior of these gels is therefore of great industrial interest. The cooking integrity of gels produced by rapidly acidifying milk using citric acid at temperatures of 60, 75, and 90 °C, was determined by analyzing composition, texture, and spatial water distribution before and after cooking. Increasing the acidification temperature from 60 to75 °C resulted in a significant reduction of yield, due to decreased moisture content of the gels. With increasing content of solids, the gels grew harder and denser, as observed by texture profile analysis and low-field Nuclear Magnetic Resonance. Upon cooking the 60 °C gel lost a significant amount of moisture, due to the contraction of the porous protein network. The more compact gels, prepared at 75 and 90 °C, did not lose mass indicating good cooking integrity, i.e. a gel that keeps its structure during cooking. Acidification temperature thus greatly influenced cooking integrity. The effect was mainly ascribed to the density of the gel texture, a result of the speed of protein aggregation and calcium recovery.
Collapse
Affiliation(s)
- Anne Katrine Laursen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Steffan Bue Dyrnø
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Kim Steven Mikkelsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Tomasz Pawel Czaja
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | - Richard Ipsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Lilia Ahrné
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
9
|
Gonzalez-Estanol K, Khomenko I, Cliceri D, Biasioli F, Stieger M. In vivo aroma release and perception of composite foods using nose space PTR–ToF–MS analysis with Temporal-Check-All-That-Apply. Food Res Int 2023; 167:112726. [PMID: 37087281 DOI: 10.1016/j.foodres.2023.112726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
In vivo aroma release and perception of complex food matrices have been underexplored. The aims of this study were to investigate the effects of (i) fat and sugar content of chocolate-hazelnut spreads on in vivo aroma release and perception and (ii) carrier addition (bread, wafer) on in vivo aroma release and perception of chocolate-hazelnut spread using dynamic nose space analysis (PTR-ToF-MS) and dynamic sensory analysis (TCATA). Carriers were combined with spreads varying in fat and sugar content and were spiked with five volatile organic compounds (benzaldehyde, filbertone, 2-methylpyrazine, delta-dodecalactone, isovaleraldehyde). TCATA profiles from a consumer panel without in vivo nose space analysis (n = 72) and a trained panel performing in vivo nose space analysis (n = 8, triplicate) were compared. TCATA profiles of the spread-carrier combinations obtained by both panels showed similarly that attributes related to the carriers were perceived at the beginning of consumption, whereas attributes related to the spreads were perceived after swallowing. Significant (p < 0.05) and small differences were observed for the attributes cocoa, creamy, milky, sticky and toffee between both panels. In the evaluated reformulation range, fat and sugar content of chocolate-hazelnut spreads had only a limited effect on in vivo aroma release and perception. In contrast, addition of carriers strongly affected in vivo aroma release and perception for all target molecules. The addition of carriers to spreads generally increased aroma release (duration and intensity of aroma release) and decreased aroma perception. The addition of carriers generally reduced the time to reach maximum intensity compared to when spreads were eaten alone for the five volatile organic compounds while perception decreased. We conclude that the strong effect of carrier addition on in vivo aroma release and perception of chocolate-hazelnut spreads highlights the importance of investigating toppings/spreads accompanied with carriers rather than in isolation.
Collapse
Affiliation(s)
- Karina Gonzalez-Estanol
- Research and Innovation Centre, Edmund Mach Foundation, San Michele All'Adige (TN), Italy; Food Quality and Design, Wageningen University, Wageningen, The Netherlands; Center of Agri-food and Environmental Sciences, Trento University, San Michele All'Adige (TN), Italy.
| | - Iuliia Khomenko
- Research and Innovation Centre, Edmund Mach Foundation, San Michele All'Adige (TN), Italy
| | - Danny Cliceri
- Research and Innovation Centre, Edmund Mach Foundation, San Michele All'Adige (TN), Italy; Center of Agri-food and Environmental Sciences, Trento University, San Michele All'Adige (TN), Italy
| | - Franco Biasioli
- Research and Innovation Centre, Edmund Mach Foundation, San Michele All'Adige (TN), Italy
| | - Markus Stieger
- Food Quality and Design, Wageningen University, Wageningen, The Netherlands; Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
10
|
Han Z, Liu S, Cao J, Yue X, Shao JH. A review of oil and water retention in emulsified meat products: The mechanisms of gelation and emulsification, the application of multi-layer hydrogels. Crit Rev Food Sci Nutr 2023; 64:8308-8324. [PMID: 37039082 DOI: 10.1080/10408398.2023.2199069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Emulsified meat products are key deep-processing products due to unique flavor and high nutritional value. Myosin dissolves, and protein aggregation and heat-induced gelation occur after myosin unfolds and hydrophobic groups are exposed. Myosin could form interfacial protein membranes and wrap fat globules. Emulsified fat globules may be filled in heat-induced gel networks. Therefore, this review intends to discuss the influences of heat-induced gelation and interfacial adsorption behavior on oil and water retention. Firstly, the mechanism of heat-induced gelation was clarified from the perspective of protein conformation and micro-structure. Secondly, the mechanism of emulsification stability and its factors affecting interfacial adsorption were demonstrated as well as limitations and challenges. Finally, the structure characteristics and application of multi-layer hydrogels in the gelation and emulsification were clarified. It could conclude that the characteristic morphology, spatial conformation and structure adjustment affected heat-induced gelation and interfacial adsorption behavior. Spatial conformation and microstructure were adjusted to improve the oil and water retention by pH, ionic strength, amino acid, oil phase characteristic and protein interaction. Multi-layer hydrogels facilitated oil and water retention. The comprehensive review of gelation and emulsification mechanisms could promote the development of meat products and improvement of meat processing technology.
Collapse
Affiliation(s)
- Zongyuan Han
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jinxuan Cao
- College of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
11
|
Recognition of odor and pleasantness based on olfactory EEG combined with functional brain network model. INT J MACH LEARN CYB 2023. [DOI: 10.1007/s13042-023-01797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
12
|
Effects of the degree of oral processing on the properties of saliva-participating emulsions: using stewed pork with brown sauce as the model. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Jonkers N, van Dommelen J, Geers M. Selective Laser Sintered food: A unit cell approach to design mechanical properties. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Mu R, Bu N, Pang J, Wang L, Zhang Y. Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications. Foods 2022; 11:3727. [PMID: 36429319 PMCID: PMC9689895 DOI: 10.3390/foods11223727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The development of novel materials with microstructures is now a trend in food science and technology. These microscale materials may be applied across all steps in food manufacturing, from raw materials to the final food products, as well as in the packaging, transport, and storage processes. Microfluidics is an advanced technology for controlling fluids in a microscale channel (1~100 μm), which integrates engineering, physics, chemistry, nanotechnology, etc. This technology allows unit operations to occur in devices that are closer in size to the expected structural elements. Therefore, microfluidics is considered a promising technology to develop micro/nanostructures for delivery purposes to improve the quality and safety of foods. This review concentrates on the recent developments of microfluidic systems and their novel applications in food science and technology, including microfibers/films via microfluidic spinning technology for food packaging, droplet microfluidics for food micro-/nanoemulsifications and encapsulations, etc.
Collapse
Affiliation(s)
- Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
15
|
Wang Y, Jiao A, Qiu C, Liu Q, Yang Y, Bian S, Zeng F, Jin Z. A combined enzymatic and ionic cross-linking strategy for pea protein/sodium alginate double-network hydrogel with excellent mechanical properties and freeze-thaw stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Gonzalez-Estanol K, Cliceri D, Biasioli F, Stieger M. Differences in dynamic sensory perception between reformulated hazelnut chocolate spreads decrease when spreads are consumed with breads and wafers. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2022.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Macias-Rodriguez BA, Velikov KP. Elastic reinforcement and yielding of starch-filled lipid gels. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2022.100257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Desai N, Masen M, Cann P, Hanson B, Tuleu C, Orlu M. Modernising Orodispersible Film Characterisation to Improve Palatability and Acceptability Using a Toolbox of Techniques. Pharmaceutics 2022; 14:pharmaceutics14040732. [PMID: 35456566 PMCID: PMC9029462 DOI: 10.3390/pharmaceutics14040732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Orodispersible films (ODFs) have been widely used in paediatric, geriatric and dysphagic patients due to ease of administration and precise and flexible dose adjustments. ODF fabrication has seen significant advancements with the move towards more technologically advanced production methods. The acceptability of ODFs is dependent upon film composition and process of formation, which affects disintegration, taste, texture and mouthfeel. There is currently a lack of testing to accurately assess ODFs for these important acceptability sensory perceptions. This study produced four ODFs formed of polyvinyl alcohol and sodium carboxymethylcellulose using 3D printing. These were assessed using three in vitro methods: Petri dish and oral cavity model (OCM) methods for disintegration and bio-tribology for disintegration and oral perception. Increasing polymer molecular weight (MW) exponentially increased disintegration time in the Petri dish and OCM methods. Higher MW films adhered to the OCM upper palate. Bio-tribology analysis showed that films of higher MW disintegrated quickest and had lower coefficient of friction, perhaps demonstrating good oral perception but also stickiness, with higher viscosity. These techniques, part of a toolbox, may enable formulators to design, test and reformulate ODFs that both disintegrate rapidly and may be better perceived when consumed, improving overall treatment acceptability.
Collapse
Affiliation(s)
- Neel Desai
- Research Department of Pharmaceutics, UCL School of Pharmacy, University College London, London WC1N 1AX, UK;
- Correspondence: (N.D.); (M.O.)
| | - Marc Masen
- Tribology Group, Department of Mechanical Engineering, Imperial College London, London SW7 9AG, UK; (M.M.); (P.C.)
| | - Philippa Cann
- Tribology Group, Department of Mechanical Engineering, Imperial College London, London SW7 9AG, UK; (M.M.); (P.C.)
| | - Ben Hanson
- UCL Mechanical Engineering, University College London, London WC1E 7JE, UK;
| | - Catherine Tuleu
- Research Department of Pharmaceutics, UCL School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Mine Orlu
- Research Department of Pharmaceutics, UCL School of Pharmacy, University College London, London WC1N 1AX, UK;
- Correspondence: (N.D.); (M.O.)
| |
Collapse
|
19
|
Cai R, Yang Z, Li Z, Wang P, Han M, Xu X. Nano Filling Effect of Nonmeat Protein Emulsion on the Rheological Property of Myofibrillar Protein Gel. Foods 2022; 11:629. [PMID: 35267262 PMCID: PMC8909849 DOI: 10.3390/foods11050629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Incorporation of vegetable oils through pre-emulsification has received notable attention for delivering polyunsaturated fatty acids to emulsified-type meat products. The two important influencing factors of the rheological property of composite myofibrillar protein (MP) gel are emulsion droplet size and active or inactive interaction between interface and meat proteins. Incorporation of nonmeat protein emulsion (2% protein (w/w), egg-white protein isolate (EPI), porcine plasma protein (PPP), or sodium caseinate (SC)) with different droplet sizes (nano or macro) to a model of 2% MP gel was investigated in this research. The results of drop size measurement showed that 15,000 psi homogenizing could decrease the diameter of emulsion drop from macro- to nanoscale in the range of 324.4−734.5 nm. Active fillers (PPP and EPI emulsions) with nanodroplet size did not influence the viscosity of emulsion-filled composite cold sols but caused positive filling effects on the MP gel matrix after heating, as evidenced by the density microstructure. PPP and EPI nano-emulsion-filled composite MP had a significant high storage modulus enforcement effect, which reached nearly eight times those of other treatments (p < 0.05). Similarly, the results of thermal scanning rheology and a large-deformation mechanical test showed that PPP and EPI emulsions with nanoscale droplets, other than macroscale, had the highest gel strength of heat-induced emulsion-filled composite MP gel (p < 0.05). Overall, these findings will be helpful for selecting the correct pre-emulsified protein and designing the textural properties of foods.
Collapse
Affiliation(s)
| | | | | | - Peng Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Z.Y.); (Z.L.); (M.H.); (X.X.)
| | | | | |
Collapse
|
20
|
Texture and microstructure of heat and acid induced gels from buffalo and cow milk: effect of thermal treatment and fat content of milk. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Gilbert A, Turgeon SL. Studying stirred yogurt microstructure and its correlation to physical properties: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Gravelle AJ, Marangoni AG. Effect of matrix architecture on the elastic behavior of an emulsion-filled polymer gel. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Gravelle AJ, Marangoni AG. A new fractal structural-mechanical theory of particle-filled colloidal networks with heterogeneous stress translation. J Colloid Interface Sci 2021; 598:56-68. [PMID: 33894617 DOI: 10.1016/j.jcis.2021.03.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
This work addresses the role of rigid inclusions in determining the elastic modulus of particle-filled colloidal networks by modifying an established fractal scaling model. The approach acknowledges the heterogeneous nature of stress distribution at length scales beyond the colloidal aggregates, while maintaining structural information at the level of individual clusters. This was achieved by introducing a scaling factor to account for system heterogeneity which contains intrinsic information about the network's capacity to form load-bearing links. Rigid fillers bound to the network induce stress concentration, but additionally serve as junction zones which introduce additional load-bearing pathways. This gives rise to the observed increase in the modulus with filler volume fraction. The proposed relationship between the load-bearing network connectivity and scaling behavior may have additional implications on the fractal dimension determined by rheological methods. Further, this model accommodates an experimentally observed correlation between the scaling behavior of the modulus associated with the addition of fillers and that arising from increasing structurant concentration. The modified fractal model thus provides an alternative view of how fillers contribute to the small- and large-deformation mechanical behavior of filled colloidal gels in a manner consistent with experimental observations.
Collapse
Affiliation(s)
- Andrew J Gravelle
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | | |
Collapse
|
24
|
Gravelle AJ, Marangoni AG. The influence of network architecture on the large deformation and fracture behavior of emulsion-filled gelatin gels. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Khalesi H, Lu W, Nishinari K, Fang Y. Fundamentals of composites containing fibrous materials and hydrogels: A review on design and development for food applications. Food Chem 2021; 364:130329. [PMID: 34175614 DOI: 10.1016/j.foodchem.2021.130329] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/10/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
The combination of fiber and hydrogel in a system can provide substantial benefits for both components, including the development of three-dimensional structures for the fiber, followed by modifications in the rheological and mechanical properties of the hydrogel. Despite a large increase in the use of fiber-hydrogel composites (FHCs) in various sciences and industries such as biomedicine, tissue engineering, cosmetics, automotive, textile, and agriculture, there is limited information about FHCs in the realm of food application. In this regard, this study reviews the mechanism of FHCs. The force transmission between fiber and hydrogel, which depends on the interactions between them during loading, is the main reason to enhance the mechanical properties of FHCs. Moreover, articles about such FHCs that have the potential for foods or food industries have been described. Additionally, the information gaps about edible FHCs were highlighted for further research. Finally, the methods of fiber formation have been summarized.
Collapse
Affiliation(s)
- Hoda Khalesi
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Lu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloids Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China; Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
26
|
The impact of model rigid fillers in acid-induced sodium caseinate/xanthan gum cooperative protein gels. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Stability and rheology of canola protein isolate-stabilized concentrated oil-in-water emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106399] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Khalesi H, Sun C, He J, Lu W, Fang Y. The role of amyloid fibrils in the modification of whey protein isolate gels with the form of stranded and particulate microstructures. Food Res Int 2021; 140:109856. [DOI: 10.1016/j.foodres.2020.109856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/08/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022]
|
29
|
Wijarnprecha K, de Vries A, Sonwai S, Rousseau D. Water-in-Oleogel Emulsions—From Structure Design to Functionality. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.566445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of water-in-oleogel (W/Og) emulsions is highlighted, with focus placed on the key properties dictating the structuring ability of both the continuous oleogelled and dispersed phases present. The gelling ability of oleogelators is distinguished by the formation of crystalline structures, polymeric strands, or tubules. Once a dispersed aqueous phase is introduced, droplet stabilization may occur via oleogelator adsorption onto the surface of the dispersed droplets, the formation of a continuous gel network, or a combination of both. Surface-active species (added or endogenous) are also required for effective W/Og aqueous phase dispersion and stabilization. Processing conditions, namely temperature-time-shear regimes, are also discussed given their important role on dispersed droplet and oleogel network formation. The effects of many factors on W/Og emulsion formation, rheology, and stability remain virtually unknown, particularly the role of dispersed droplet size, gelation, and clustering as well as the applicability of the active filler concept to foods. This review explores some of these factors and briefly mentions possible applications of W/Og emulsions.
Collapse
|
30
|
van Eck A, Stieger M. Oral processing behavior, sensory perception and intake of composite foods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Samaras G, Bikos D, Vieira J, Hartmann C, Charalambides M, Hardalupas Y, Masen M, Cann P. Measurement of molten chocolate friction under simulated tongue-palate kinematics: Effect of cocoa solids content and aeration. Curr Res Food Sci 2020; 3:304-313. [PMID: 33336192 PMCID: PMC7733011 DOI: 10.1016/j.crfs.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The perception of some food attributes is related to mechanical stimulation and friction experienced in the tongue-palate contact during mastication. This paper reports a new bench test to measure friction in the simulated tongue-palate contact. The test consists of a flat PDMS disk, representing the tongue loaded and reciprocating against a stationary lower glass surface representing the palate. The test was applied to molten chocolate samples with and without artificial saliva. Friction was measured over the first few rubbing cycles, simulating mechanical degradation of chocolate in the tongue-palate region. The effects of chocolate composition (cocoa solids content ranging between 28 wt% and 85 wt%) and structure (micro-aeration/non-aeration 0–15 vol%) were studied. The bench test clearly differentiates between the various chocolate samples. The coefficient of friction increases with cocoa solids percentage and decreases with increasing micro-aeration level. The presence of artificial saliva in the contact reduced the friction for all chocolate samples, however the relative ranking remained the same.
Development of a reciprocating sliding friction test to mimic tongue-palate motion. Variations in friction coefficient depending on chocolate composition and structure. Higher cocoa content samples had higher friction coefficient. Friction coefficient decreased with aeration (0–15% vol). The presence of an artificial saliva film reduced chocolate friction.
Collapse
Affiliation(s)
- Georgios Samaras
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dimitrios Bikos
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Josélio Vieira
- Nestlé Product Technology Centre York, Nestlé, York, United Kingdom
| | - Christoph Hartmann
- Nestlé Research Centre, Vers Chez Les Blancs, CH-1000 Lausanne 26, Switzerland
| | - Maria Charalambides
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yannis Hardalupas
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marc Masen
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philippa Cann
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
32
|
Khalesi H, Lu W, Fang Y. WITHDRAWN: Reinforcing the rheological and mechanical properties of WPI nanocomposite hydrogels with birefringence morphologies. Int J Biol Macromol 2020:S0141-8130(20)34981-3. [PMID: 33188813 DOI: 10.1016/j.ijbiomac.2020.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Hoda Khalesi
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Lu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
33
|
Makame J, De Kock H, Emmambux NM. Nutrient density of common African indigenous/local complementary porridge samples. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Khalesi H, Lu W, Nishinari K, Fang Y. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Adv Colloid Interface Sci 2020; 285:102278. [PMID: 33010577 DOI: 10.1016/j.cis.2020.102278] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Enhancement on the mechanical properties of hydrogels leads to a wider range of their applications in various fields. Therefore, there has been a great interest recently for developing new strategies to reinforce hydrogels. Moreover, food gels must be edible in terms of both raw materials and production. This paper reviews innovative techniques such as particle/fiber-reinforced hydrogel, double network, dual crosslinking, freeze-thaw cycles, physical conditioning and soaking methods to improve the mechanical properties of hydrogels. Additionally, their fundamental mechanisms, advantages and disadvantages have been discussed. Important biopolymers that have been employed for these strategies and also their potentials in food applications have been summarized. The general mechanism of these strategies is based on increasing the degree of crosslinking between interacting polymers in hydrogels. These links can be formed by adding fillers (oil droplets or fibers in filled gels) or cross-linkers (regarding double network and soaking method) and also by condensation or alignment of the biopolymers (freeze-thaw cycle and physical conditioning) in the gel network. The properties of particle/fiber-reinforced hydrogels extremely depend on the filler, gel matrix and the interaction between them. In freeze-thaw cycles and physical conditioning methods, it is possible to form new links in the gel network without adding any cross-linkers or fillers. It is expected that the utilization of gels will get broader and more varied in food industries by using these strategies.
Collapse
|
35
|
McClements DJ. Future foods: Is it possible to design a healthier and more sustainable food supply? NUTR BULL 2020. [DOI: 10.1111/nbu.12457] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D. J. McClements
- Department of Food Science University of Massachusetts Amherst MA USA
| |
Collapse
|
36
|
Influence of clustering of protein-stabilised oil droplets with proanthocyanidins on mechanical, tribological and sensory properties of o/w emulsions and emulsion-filled gels. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Modulating water mobility in comminuted meat protein gels using model hydrophilic filler particles. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Romero-Guzmán MJ, Köllmann N, Zhang L, Boom RM, Nikiforidis CV. Controlled oleosome extraction to produce a plant-based mayonnaise-like emulsion using solely rapeseed seeds. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
McClements DJ. Future foods: a manifesto for research priorities in structural design of foods. Food Funct 2020; 11:1933-1945. [PMID: 32141468 DOI: 10.1039/c9fo02076d] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A number of major challenges facing modern society are related to the food supply. As the global population grows, it will be critical to feed everyone without damaging the environment. Advances in biotechnology, nanotechnology, structural design, and artificial intelligence are providing farmers and food manufacturers will new tools to address these problems. More and more people are migrating from rural to urban environments, leading to a change in their dietary habits, especially increasing consumption of animal-based products and highly-processed foods. Animal-based foods lead to more greenhouse gas production, land use, water use, and pollution than plant-based ones. Moreover, many animal-based and highly-processed foods have adverse effects on human health and wellbeing. Consumers are therefore being encouraged to consume more plant-based foods, such as fruits, vegetables, cereals, and legumes. Many people, however, do not have the time, money, or inclination to prepare foods from fresh produce. Consequently, there is a need for the food industry to create a new generation of processed foods that are desirable, tasty, inexpensive, and convenient, but that are also healthy and sustainable. This article highlights some of the main food-related challenges faced by modern society and how scientists are developing innovative technologies to address them.
Collapse
|
40
|
Fuhrmann P, Kalisvaart L, Sala G, Scholten E, Stieger M. Clustering of oil droplets in o/w emulsions enhances perception of oil-related sensory attributes. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Ruan Q, Yang X, Zeng L, Qi J. Physical and tribological properties of high internal phase emulsions based on citrus fibers and corn peptides. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Considerations for readdressing theoretical descriptions of particle-reinforced composite food gels. Food Res Int 2019; 122:209-221. [DOI: 10.1016/j.foodres.2019.03.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 11/21/2022]
|
43
|
Makame J, Cronje T, Emmambux NM, De Kock H. Dynamic Oral Texture Properties of Selected Indigenous Complementary Porridges Used in African Communities. Foods 2019; 8:foods8060221. [PMID: 31234403 PMCID: PMC6617364 DOI: 10.3390/foods8060221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 02/03/2023] Open
Abstract
Child malnutrition remains a major public health problem in low-income African communities, caused by factors including the low nutritional value of indigenous/local complementary porridges (CP) fed to infants and young children. Most African children subsist on locally available starchy foods, whose oral texture is not well-characterized in relation to their sensorimotor readiness. The sensory quality of CP affects oral processing (OP) abilities in infants and young children. Unsuitable oral texture limits nutrient intake, leading to protein-energy malnutrition. The perception of the oral texture of selected African CPs (n = 13, Maize, Sorghum, Cassava, Orange-fleshed sweet potato (OFSP), Cowpea, and Bambara) was investigated by a trained temporal-check-all-that-apply (TCATA) panel (n = 10), alongside selected commercial porridges (n = 19). A simulated OP method (Up-Down mouth movements- munching) and a control method (lateral mouth movements- normal adult-like chewing) were used. TCATA results showed that Maize, Cassava, and Sorghum porridges were initially too thick, sticky, slimy, and pasty, and also at the end not easy to swallow even at low solids content—especially by the Up-Down method. These attributes make CPs difficult to ingest for infants given their limited OP abilities, thus, leading to limited nutrient intake, and this can contribute to malnutrition. Methods to improve the texture properties of indigenous CPs are needed to optimize infant nutrient intake.
Collapse
Affiliation(s)
- James Makame
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
| | - Tanita Cronje
- Department of Statistics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
| | - Naushad M Emmambux
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
| | - Henriette De Kock
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
| |
Collapse
|
44
|
van Eck A, Hardeman N, Karatza N, Fogliano V, Scholten E, Stieger M. Oral processing behavior and dynamic sensory perception of composite foods: Toppings assist saliva in bolus formation. Food Qual Prefer 2019. [DOI: 10.1016/j.foodqual.2018.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Aguilera JM. Relating Food Engineering to Cooking and Gastronomy. Compr Rev Food Sci Food Saf 2018; 17:1021-1039. [PMID: 33350113 DOI: 10.1111/1541-4337.12361] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
Modern consumers are increasingly eating meals away from home and are concerned about food quality, taste, and health aspects. Food engineering (FE) has traditionally been associated with the industrial processing of foods; however, most underlying phenomena related to FE also take place in the kitchen during meal preparation. Although chemists have positively interacted with acclaimed chefs and physicists have used foods as materials to demonstrate some of their theories, this has not been always the case with food engineers. This review addresses areas that may broaden the vision of FE by interfacing with cooking and gastronomy. Examples are presented where food materials science may shed light on otherwise empirical gastronomic formulations and cooking techniques. A review of contributions in modeling of food processing reveals that they can also be adapted to events going on in pots and ovens, and that results can be made available in simple terms to cooks. Industrial technologies, traditional and emerging, may be adapted to expand the collection of culinary transformations, while novel equipment, digital technologies, and laboratory instruments are equipping the 21st-century kitchens. FE should become a part of food innovation and entrepreneurship now being led by chefs. Finally, it is suggested that food engineers become integrated into gastronomy's concerns about safety, sustainability, nutrition, and a better food use.
Collapse
Affiliation(s)
- José Miguel Aguilera
- the Dept. of Chemical and Bioprocess Engineering, Univ. Católica de Chile, Santiago, Chile
| |
Collapse
|
46
|
Liu X, Guo J, Wan ZL, Liu YY, Ruan QJ, Yang XQ. Wheat gluten-stabilized high internal phase emulsions as mayonnaise replacers. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.09.032] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Bernaerts TMM, Panozzo A, Verhaegen KAF, Gheysen L, Foubert I, Moldenaers P, Hendrickx ME, Van Loey AM. Impact of different sequences of mechanical and thermal processing on the rheological properties ofPorphyridium cruentumandChlorella vulgarisas functional food ingredients. Food Funct 2018; 9:2433-2446. [DOI: 10.1039/c8fo00261d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different processing sequences result in specific rheological properties of these microalgae as functional food ingredients.
Collapse
Affiliation(s)
- Tom M. M. Bernaerts
- Laboratory of Food Technology (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Agnese Panozzo
- Laboratory of Food Technology (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Katrien A. F. Verhaegen
- Laboratory of Food Technology (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Lore Gheysen
- Laboratory Food and Lipids (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven Kulak
- 8500 Kortrijk
| | - Imogen Foubert
- Laboratory Food and Lipids (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven Kulak
- 8500 Kortrijk
| | - Paula Moldenaers
- Soft Matter
- Rheology and Technology
- Department of Chemical Engineering
- KU Leuven
- 3001 Heverlee
| | - Marc E. Hendrickx
- Laboratory of Food Technology (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Ann M. Van Loey
- Laboratory of Food Technology (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| |
Collapse
|
48
|
|
49
|
Thompson BR, Horozov TS, Stoyanov SD, Paunov VN. Structuring and calorie control of bakery products by templating batter with ultra melt-resistant food-grade hydrogel beads. Food Funct 2017; 8:2967-2973. [PMID: 28745751 DOI: 10.1039/c7fo00867h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the use of a temperature insensitive, food-grade hydrogel to reduce the caloric density of pancakes that were prepared at temperatures much higher than the boiling point of water. This cheap, facile method utilises a mixed agar-methylcellulose hydrogel, which was blended to produce a slurry of hydrogel microbeads. The pancake batter was mixed with a controlled volume percentage of slurry of hydrogel beads and cooked. From bomb calorimetry experiments, the composites were found to have a reduced caloric density that reflects the volume percentage of hydrogel beads mixed with the batter. Using this procedure, we were able to reduce the caloric density of pancakes by up to 23 ± 3% when the volume percentage of hydrogel beads initially used was 25%. The method is not limited to pancakes and could potentially be applied to various other food products. The structure and morphology of the freeze-dried pancakes and pancake-hydrogel composites were investigated and pores of a similar size to the hydrogel beads were found, confirming that the gel beads maintained their structure during the cooking process. There is scope for further development of this method by the encapsulation of nutritionally beneficial or flavour enhancing ingredients within the hydrogel beads.
Collapse
Affiliation(s)
- Benjamin R Thompson
- School of Mathematics and Physical Sciences (Chemistry), University of Hull, Hull, UK.
| | - Tommy S Horozov
- School of Mathematics and Physical Sciences (Chemistry), University of Hull, Hull, UK.
| | - Simeon D Stoyanov
- Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands and Laboratory of Physical Chemistry and Soft Matter, Wageningen University, 6703 HB Wageningen, The Netherlands and Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Vesselin N Paunov
- School of Mathematics and Physical Sciences (Chemistry), University of Hull, Hull, UK.
| |
Collapse
|