1
|
Shang H, Zhang X, Ding M, Zhang A. Dual-mode biosensor platform based on synergistic effects of dual-functional hybrid nanomaterials. Talanta 2023; 260:124584. [PMID: 37121141 DOI: 10.1016/j.talanta.2023.124584] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Detection of biomarkers is very vital in the prevention, diagnosis and treatment of diseases. However, due to the poor accuracy and sensitivity of the constructed biosensors, we are now facing great challenges. In addressing these problems, nanohybrid-based dual mode biosensors including optical-optical, optical-electrochemical and electrochemical-electrochemical have been developed to detect various biomarkers. Integrating the merits of nanomaterials with abundant active sites, synergy and excellent physicochemical properties, many bi-functional nanohybrids have been reasonable designed and controllable preparation, which applied to the construction dual mode biosensors. Despite the significant progress, further efforts are still needed to develop dual mode biosensors and ensure their practical application by using portable digital devices. Therefore, the present review summarizes an in-depth evaluation of the bi-functional nanohybrids assisted dual mode biosensing platform of biomarkers. We are hoping this review could inspire further concepts in developing novel dual mode biosensors for possible detection application.
Collapse
Affiliation(s)
- Hongyuan Shang
- College of Pharmacy, Shanxi Medical University Taiyuan, 030001, PR China.
| | - Xiaofei Zhang
- College of Pharmacy, Shanxi Medical University Taiyuan, 030001, PR China
| | - Meili Ding
- College of Pharmacy, Shanxi Medical University Taiyuan, 030001, PR China
| | - Aiping Zhang
- College of Pharmacy, Shanxi Medical University Taiyuan, 030001, PR China.
| |
Collapse
|
2
|
Ma Y, Colin C, Descamps J, Arbault S, Sojic N. Shadow Electrochemiluminescence Microscopy of Single Mitochondria. Angew Chem Int Ed Engl 2021; 60:18742-18749. [PMID: 34115447 DOI: 10.1002/anie.202105867] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Mitochondria are the subcellular bioenergetic organelles. The analysis of their morphology and topology is essential to provide useful information on their activity and metabolism. Herein, we report a label-free shadow electrochemiluminescence (ECL) microscopy based on the spatial confinement of the ECL-emitting reactive layer to image single living mitochondria deposited on the electrode surface. The ECL mechanism of the freely-diffusing [Ru(bpy)3 ]2+ dye with the sacrificial tri-n-propylamine coreactant restrains the light-emitting region to a micrometric thickness allowing to visualize individual mitochondria with a remarkable sharp negative optical contrast. The imaging approach named "shadow ECL" (SECL) reflects the negative imprint of the local diffusional hindrance of the ECL reagents by each mitochondrion. The statistical analysis of the colocalization of the shadow ECL spots with the functional mitochondria revealed by classical fluorescent biomarkers, MitoTracker Deep Red and the endogenous intramitochondrial NADH, validates the reported methodology. The versatility and extreme sensitivity of the approach are further demonstrated by visualizing single mitochondria, which remain hardly detectable with the usual biomarkers. Finally, by alleviating problems of photobleaching and phototoxicity associated with conventional microscopy methods, SECL microscopy should find promising applications in the imaging of subcellular structures.
Collapse
Affiliation(s)
- Yumeng Ma
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Camille Colin
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Julie Descamps
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Stéphane Arbault
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,Present address: Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| |
Collapse
|
3
|
Ma Y, Colin C, Descamps J, Arbault S, Sojic N. Shadow Electrochemiluminescence Microscopy of Single Mitochondria. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yumeng Ma
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| | - Camille Colin
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| | - Julie Descamps
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| | - Stéphane Arbault
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
- Present address: Univ. Bordeaux CNRS Bordeaux INP CBMN UMR 5248 Allée Geoffroy Saint Hilaire 33600 Pessac France
| | - Neso Sojic
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| |
Collapse
|
4
|
Single-Particle Tracking Method in Fluorescence Microscopy to Monitor Bioenergetic Responses of Individual Mitochondria. Methods Mol Biol 2021. [PMID: 34060039 DOI: 10.1007/978-1-0716-1266-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The spectroscopic methods commonly used to study mitochondria bioenergetics do not show the diversity of responses within a population of mitochondria (isolated or in a cell), and/or cannot measure individual dynamics. New methodological developments are necessary in order to improve quantitative and kinetic resolutions and eventually gain further insights on individual mitochondrial responses, such as studying activities of the mitochondrial permeability transition pore (mPTP ). The work reported herein is devoted to study responses of single mitochondria within a large population after isolation from cardiomyocytes. Mitochondria were preloaded with a commonly used membrane potential sensitive dye (TMRM), they are then deposited on a plasma-treated glass coverslip and subsequently energized or inhibited by additions of usual bioenergetics effectors. Responses were analyzed by fluorescence microscopy over few thousands of mitochondria simultaneously with a single organelle resolution. We report an automatic method to analyze each image of time-lapse stacks based on the TrackMate-ImageJ plug-in and specially made Python scripts. Images are processed to eliminate defects of illumination inhomogeneity, improving by at least two orders of magnitude the signal/noise ratio. This method enables us to follow the track of each mitochondrion within the observed field and monitor its fluorescence changes, with a time resolution of 400 ms, uninterrupted over the course of the experiment. Such methodological improvement is a prerequisite to further study the role of mPTP in single mitochondria during calcium transient loading.
Collapse
|
5
|
Lohse M, Thesen MW, Haase A, Smolka M, Iceta NB, Ayerdi Izquierdo A, Ramos I, Salado C, Schleunitz A. Novel Concept of Micro Patterned Micro Titer Plates Fabricated via UV-NIL for Automated Neuronal Cell Assay Read-Out. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:902. [PMID: 33916037 PMCID: PMC8065385 DOI: 10.3390/nano11040902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/01/2023]
Abstract
The UV-nanoimprint lithography(UV-NIL) fabrication of a novel network of micron-sized channels, forming an open channel microfluidic system is described. Details about the complete manufacturing process, from mastering to fabrication in small batches and in high throughput with up to 1200 micro titer plates per hour is presented. Deep insight into the evaluation of a suitable UV-curable material, mr-UVCur26SF is given, presenting cytotoxic evaluation, cell compatibility tests and finally a neuronal assay. The results indicate how the given pattern, in combination with the resist, paves the way to faster, cheaper, and more reliable drug screening.
Collapse
Affiliation(s)
- Mirko Lohse
- Micro Resist Technology GmbH, Köpenicker Str. 325, 12555 Berlin, Germany; (M.W.T.); (A.S.)
| | - Manuel W. Thesen
- Micro Resist Technology GmbH, Köpenicker Str. 325, 12555 Berlin, Germany; (M.W.T.); (A.S.)
| | - Anja Haase
- Joanneum Research Materials, Institute for Surface Technologies and Photonics, 8160 Weiz, Austria; (A.H.); (M.S.)
| | - Martin Smolka
- Joanneum Research Materials, Institute for Surface Technologies and Photonics, 8160 Weiz, Austria; (A.H.); (M.S.)
| | - Nerea Briz Iceta
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián, Spain; (N.B.I.); (A.A.I.)
| | - Ana Ayerdi Izquierdo
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián, Spain; (N.B.I.); (A.A.I.)
| | - Isbaal Ramos
- Innoprot, Parque Tecnológico de Bizkaia, Edificio 502, Primera Planta, 48160 Derio-Bizkaia, Spain; (I.R.); (C.S.)
| | - Clarisa Salado
- Innoprot, Parque Tecnológico de Bizkaia, Edificio 502, Primera Planta, 48160 Derio-Bizkaia, Spain; (I.R.); (C.S.)
| | - Arne Schleunitz
- Micro Resist Technology GmbH, Köpenicker Str. 325, 12555 Berlin, Germany; (M.W.T.); (A.S.)
| |
Collapse
|
6
|
Lohse M, Heinrich M, Grützner S, Haase A, Ramos I, Salado C, Thesen MW, Grützner G. Versatile fabrication method for multiscale hierarchical structured polymer masters using a combination of photo- and nanoimprint lithography. MICRO AND NANO ENGINEERING 2021. [DOI: 10.1016/j.mne.2020.100079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Recent advances in fluorescent probes for cellular antioxidants: Detection of NADH, hNQO1, H2S, and other redox biomolecules. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213613] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Vajrala VS, Sekli Belaidi F, Lemercier G, Zigah D, Rigoulet M, Devin A, Sojic N, Temple-Boyer P, Launay J, Arbault S. Microwell array integrating nanoelectrodes for coupled opto-electrochemical monitorings of single mitochondria. Biosens Bioelectron 2019; 126:672-678. [DOI: 10.1016/j.bios.2018.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022]
|