1
|
Jamerlan AM, Shim KH, Sharma N, An SSA. Multimer Detection System: A Universal Assay System for Differentiating Protein Oligomers from Monomers. Int J Mol Sci 2025; 26:1199. [PMID: 39940966 PMCID: PMC11818661 DOI: 10.3390/ijms26031199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Depositions of protein aggregates are typical pathological hallmarks of various neurodegenerative diseases (NDs). For example, amyloid-beta (Aβ) and tau aggregates are present in the brain and plasma of patients with Alzheimer's disease (AD); α-synuclein in Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA); mutant huntingtin protein (Htt) in Huntington's disease (HD); and DNA-binding protein 43 kD (TDP-43) in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and limbic-predominant age-related TDP-43 encephalopathy (LATE). The same misfolded proteins can be present in multiple diseases in the form of mixed proteinopathies. Since there is no cure for all these diseases, understanding the mechanisms of protein aggregation becomes imperative in modern medicine, especially for developing diagnostics and therapeutics. A Multimer Detection System (MDS) was designed to distinguish and quantify the multimeric/oligomeric forms from the monomeric form of aggregated proteins. As the unique epitope of the monomer is already occupied by capturing or detecting antibodies, the aggregated proteins with multiple epitopes would be accessible to both capturing and detecting antibodies simultaneously, and signals will be generated from the oligomers rather than the monomers. Hence, MDS could present a simple solution for measuring various conformations of aggregated proteins with high sensitivity and specificity, which may help to explore diagnostic and treatment strategies for developing anti-aggregation therapeutics.
Collapse
Affiliation(s)
| | | | - Niti Sharma
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea; (A.M.J.); (K.H.S.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea; (A.M.J.); (K.H.S.)
| |
Collapse
|
2
|
Zare H, Kasdorf MM, Bakhshian Nik A. Microfluidics in neural extracellular vesicles characterization for early Alzheimer's disease diagnosis. Mol Cell Neurosci 2024; 132:103982. [PMID: 39631514 DOI: 10.1016/j.mcn.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
Dementia is a general term for conditions impairing cognitive abilities including perception, reasoning, attention, judgment, memory, and daily brain function. Early diagnosis of Alzheimer's disease (AD), the most common form of dementia, using neural extracellular vesicles (nEVs) is the focus of the current study. These nEVs carry AD biomarkers including β-amyloid proteins and phosphorylated tau proteins. The novelty of this review lies in developing a microfluidic perspective by introducing the techniques using a microfluidic platform for early diagnosis of AD. A microfluidic device can detect small sample sizes with significantly low concentrations. These devices combine nEV isolation, enrichment, and detection, which makes them ideal candidates for early AD diagnosis.
Collapse
Affiliation(s)
- Hossein Zare
- Chemical and Biochemical Engineering Department, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
3
|
Lan Y, Zhou Y, Wu M, Jia C, Zhao J. Microfluidic based single cell or droplet manipulation: Methods and applications. Talanta 2023; 265:124776. [PMID: 37348357 DOI: 10.1016/j.talanta.2023.124776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
The isolation of single cell or droplet is first and crucial step to single-cell analysis, which is important for cancer research and diagnostic methods. This review provides an overview of technologies that are currently used or in development to realize the isolation. Microfluidic based manipulation is an emerging technology with the distinct advantages of miniaturization and low cost. Therefore, recent developments in microfluidic isolated methods have attracted extensive attention. We introduced herein five strategies based on microfluid: trap, microfluidic discrete manipulation, bioprinter, capillary and inertial force. For every technology, their basic principles and features were discussed firstly. Then some modified approaches and applications were listed as the extension. Finally, we compared the advantages and drawbacks of these methods, and analyzed the trend of the manipulation based on microfluidics.
Collapse
Affiliation(s)
- Yuwei Lan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yang Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Man Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Wu M, Huang Y, Huang Y, Wang H, Li M, Zhou Y, Zhao H, Lan Y, Wu Z, Jia C, Feng S, Zhao J. Droplet magnetic-controlled microfluidic chip integrated nucleic acid extraction and amplification for the detection of pathogens and tumor mutation sites. Anal Chim Acta 2023; 1271:341469. [PMID: 37328249 DOI: 10.1016/j.aca.2023.341469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Traditional nucleic acid extraction and detection is based on open operation, which may cause cross-contamination and aerosol formation. This study developed a droplet magnetic-controlled microfluidic chip integrated nucleic acid extraction, purification and amplification. The reagent is sealed in oil to form a droplet, and the nucleic acid is extracted and purified by controlling the movement of the magnetic beads (MBs) through a permanent magnet, ensuring a closed environment. This chip can automatically extract nucleic acid from multiple samples within 20 min, and can be directly placed in the in situ amplification instrument for amplification without further transfer of nucleic acid, characterized by simple, fast, time-saving and labor-saving. The results showed that the chip was able to detect <10 copies/test SARS-CoV-2 RNA, and EGFR exon 21 L858R mutations were detected in H1975 cells as low as 4 cells. In addition, on the basis of the droplet magnetic-controlled microfluidic chip, we further developed a multi-target detection chip, which used MBs to divide the nucleic acid of the sample into three parts. And the macrolides resistance mutations A2063G and A2064G, and the P1 gene of mycoplasma pneumoniae (MP) were successfully detected in clinical samples by the multi-target detection chip, providing the possibility for future application in the detection of multiple pathogens.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Huang
- Shanghai Normal University, Shanghai, 200030, China
| | - Yaru Huang
- Shanghai Normal University, Shanghai, 200030, China
| | - Hua Wang
- Renji Hospital Affiliated to Shanghai Jiao Tong University, 200127, China
| | - Min Li
- Renji Hospital Affiliated to Shanghai Jiao Tong University, 200127, China
| | - Yang Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Lan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Hsiao WWW, Angela S, Le TN, Ku CC, Hu PS, Chiang WH. Evolution of Detecting Early Onset of Alzheimer's Disease: From Neuroimaging to Optical Immunoassays. J Alzheimers Dis 2023:JAD221202. [PMID: 37125550 DOI: 10.3233/jad-221202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alzheimer's disease (AD) is a pathological disorder defined by the symptoms of memory loss and deterioration of cognitive abilities over time. Although the etiology is complex, it is mainly associated with the accumulation of toxic amyloid-β peptide (Aβ) aggregates and tau protein-induced neurofibrillary tangles (NFTs). Even now, creating non-invasive, sensitive, specific, and cost-effective diagnostic methods for AD remains challenging. Over the past few decades, polymers, and nanomaterials (e.g., nanodiamonds, nanogold, quantum dots) have become attractive and practical tools in nanomedicine for diagnosis and treatment. This review focuses on current developments in sensing methods such as enzyme-linked immunosorbent assay (ELISA) and surface-enhanced Raman scattering (SERS) to boost the sensitivity in detecting related biomarkers for AD. In addition, optical analysis platforms such as ELISA and SERS have found increasing popularity among researchers due to their excellent sensitivity and specificity, which may go as low as the femtomolar range. While ELISA offers easy technological usage and high throughput, SERS has the advantages of improved mobility, simple electrical equipment integration, and lower cost. Both portable optical sensing techniques are highly superior in terms of sensitivity, specificity, human application, and practicality, enabling the early identification of AD biomarkers.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C
| | - Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C
| | - Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Po-Sheng Hu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan City, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C
| |
Collapse
|
6
|
Kakkar S, Chauhan S, Bala R, Bharti, Kumar V, Rohit M, Bhalla V. Site-directed dual bioprobes inducing single-step nano-sandwich assay for the detection of cardiac troponin I. Mikrochim Acta 2022; 189:366. [PMID: 36053384 DOI: 10.1007/s00604-022-05461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
Abstract
Bioreceptor functionalized metallic nano-colloids have been identified as effective nanobioprobes to realize the detection of an analyte based on a common phenomenon of salt-induced aggregation. In marked contrast to this, we describe a nano-sandwich assay integrating the novel match-pair of aptamer and peptide functionalized gold nanoparticles. The site-directed biomolecular interaction of high affinity aptamer and peptide bioreceptors directed towards distinct sites of cardiac biomarker troponin I; this was found to form a nano-sandwich assay in a peculiar manner. The gold nanoconjugates interact with specific and distant regions of troponin I to result in collision of probes upon target identification. In the presence of TnI, both nanobioprobes bind at their respective sites forming a nano-sandwich pair providing a visual color change from red to blue. Thus, the presence of target TnI itself causes instant agglomeration in just a single-step without addition of any external aggregator. The assay imparts 100% specificity and 90% sensitivity in a dynamic concentration range of 0.1-500 ng/mL troponin I with detection limit as low as 0.084 ng/mL. The applicability of the assay has been validated in clinical samples of acute myocardial infarction patients thus establishing a promising point-of-care detection of TnI.
Collapse
Affiliation(s)
- Saloni Kakkar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | - Sakshi Chauhan
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | - Rajni Bala
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | - Bharti
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | - Virendra Kumar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036
| | | | - Vijayender Bhalla
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India, 160036.
| |
Collapse
|
7
|
Liao X, Ge K, Cai Z, Qiu S, Wu S, Li Q, Liu Z, Gao F, Tang Q. Hybridization chain reaction triggered poly adenine to absorb silver nanoparticles for label-free electrochemical detection of Alzheimer's disease biomarkers amyloid β-peptide oligomers. Anal Chim Acta 2022; 1192:339391. [DOI: 10.1016/j.aca.2021.339391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/01/2022]
|
8
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
9
|
Huang E, Huang D, Wang Y, Cai D, Luo Y, Zhong Z, Liu D. Active droplet-array microfluidics-based chemiluminescence immunoassay for point-of-care detection of procalcitonin. Biosens Bioelectron 2022; 195:113684. [PMID: 34607116 DOI: 10.1016/j.bios.2021.113684] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
The application of conventional chemiluminescence immunoassay (CLIA) in resource-limited settings is limited due to the large apparatus footprint, cumbersome operation and maintenance process, and high consumption of reagents. To address this issue, we developed an active droplet-array (ADA) microfluidics-based CLIA system, which consists of a compact microchip analyzer and microfluidic chips with preloaded reagents. The microfluidic chip contains microslit-connected microchambers, in which all the required reagents were preloaded in water-in-oil droplets. The microfluidic chip analyzer can manipulate five microfluidic chips in parallel in a single run. By interacting the microchip with magnetic, thermal, optical mechanisms programmatically, the entire workflow of CLIA can be accomplished in an automated manner. With the proposed CLIA, the detection of procalcitonin (PCT) can be completed in 12 min, with a limit of detection (LOD) of 0.044 ng mL-1 and a detection range from 0.044 to 100 ng mL-1. We found a good linear correlation between the microfluidic CLIA and the conventional electrochemiluminescence immunoassay (R2=0.98).The microfluidic CLIA has significant advantages over the conventional ELISA in detection sensitivity, dynamic range, instrument size and turnaround time, and can provide more consistent and reliable results than the lateral flow immunoassays. The compact microfluidic system can perform automated and parallelized CLIA in a short turnaround time, and thus well suited to Point-of-Care detection of disease biomarkers.
Collapse
Affiliation(s)
- Enqi Huang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Dezhi Huang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yu Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Dongyang Cai
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yanzhang Luo
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhimin Zhong
- Department of Laboratory Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Dayu Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China; Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou, 510180, China.
| |
Collapse
|
10
|
Cheng H, Liu H, Li W, Li M. Recent advances in magnetic digital microfluidic platforms. Electrophoresis 2021; 42:2329-2346. [PMID: 34196022 DOI: 10.1002/elps.202100088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
Magnetic Digital microfluidics (DMF), which enables the manipulation of droplets containing different types of samples and reagents by permanent magnets or electromagnet arrays, has been used as a promising platform technology for bioanalytical and preparative assays. This is due to its unique advantages such as simple and "power free" operation, easy assembly, great compatibility with auto control systems, and dual functionality of magnetic particles (actuation and target attachment). Over the past decades, magnetic DMF technique has gained a widespread attention in many fields such as sample-to-answer molecular diagnostics, immunoassays, cell assays, on-demand chemical synthesis, and single-cell manipulation. In the first part of this review, we summarised features of magnetic DMF. Then, we introduced the actuation mechanisms and fabrication of magnetic DMF. Furthermore, we discussed five main applications of magnetic DMF, namely drug screening, protein assays, polymerase chain reaction (PCR), cell manipulation, and chemical analysis and synthesis. In the last part of the review, current challenges and limitations with magnetic DMF technique were discussed, such as biocompatibility, automation of microdroplet control systems, and microdroplet evaporation, with an eye on towards future development.
Collapse
Affiliation(s)
- Hao Cheng
- Laboratoire de Thermique et Energie de Nantes (LTEN), UMR CNRS 6607, Polytech' Nantes-Université de Nantes, Nantes Cedex 03, France.,School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, Australia
| | - Hangrui Liu
- Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales, Australia
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, Australia
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Hassan MR, Zhang J, Wang C. Digital Microfluidics: Magnetic Transportation and Coalescence of Sessile Droplets on Hydrophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5823-5837. [PMID: 33961445 DOI: 10.1021/acs.langmuir.1c00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic digital microfluidics is advantageous over other existing droplet manipulation methods, which exploits magnetic forces for actuation and offers the flexibility of implementation in resource-limited point-of-care applications. This article discusses the dynamic behavior of a pair of sessile droplets on a hydrophobic surface under the presence of a permanent magnetic field. A phase field method-based solver is employed in a two-dimensional computational domain to numerically capture the dynamic evolution of the droplet interfaces, which again simultaneously solves the magnetic and flow fields. On a superhydrophobic surface (i.e., θc = 150°), the nonuniform magnetic field forces the pair of sessile droplets to move toward each other, which eventually leads to a jumping off phenomenon of the merged droplet from the solid surface after coalescence. Also, there exists a critical magnetic Bond number Bomcr, beyond which no coalescence event between droplets is observed. Moreover, on a less hydrophobic surface (θc ≤ 120°), the droplets still coalesce under a magnetic field, although the merged droplet does not experience any upward flight after coalescence. Also, the merging phenomenon at lower contact angle values (i.e., θc = 90°) appears significantly different than at higher contact angle values (i.e., θc = 120°). Additionally, if the pair of sessile droplets is dispersed to a different surrounding medium, the viscosity ratio plays a significant role in the upward flight of the merged droplet, where the coalesced droplet exhibits increased vertical migration at higher viscosity ratios.
Collapse
Affiliation(s)
- Md Rifat Hassan
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 400 W. 13th Street, Rolla, Missouri 65409, United States
| | - Jie Zhang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 400 W. 13th Street, Rolla, Missouri 65409, United States
| | - Cheng Wang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 400 W. 13th Street, Rolla, Missouri 65409, United States
| |
Collapse
|
12
|
Kulenkampff K, Wolf Perez AM, Sormanni P, Habchi J, Vendruscolo M. Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nat Rev Chem 2021; 5:277-294. [PMID: 37117282 DOI: 10.1038/s41570-021-00254-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Protein misfolding and aggregation are characteristic of a wide range of neurodegenerative disorders, including Alzheimer and Parkinson diseases. A hallmark of these diseases is the aggregation of otherwise soluble and functional proteins into amyloid aggregates. Although for many decades such amyloid deposits have been thought to be responsible for disease progression, it is now increasingly recognized that the misfolded protein oligomers formed during aggregation are, instead, the main agents causing pathological processes. These oligomers are transient and heterogeneous, which makes it difficult to detect and quantify them, generating confusion about their exact role in disease. The lack of suitable methods to address these challenges has hampered efforts to investigate the molecular mechanisms of oligomer toxicity and to develop oligomer-based diagnostic and therapeutic tools to combat protein misfolding diseases. In this Review, we describe methods to quantify misfolded protein oligomers, with particular emphasis on diagnostic applications as disease biomarkers and on therapeutic applications as target biomarkers. The development of these methods is ongoing, and we discuss the challenges that remain to be addressed to establish measurement tools capable of overcoming existing limitations and to meet present needs.
Collapse
|
13
|
Liao X, Zhang C, Shi Z, Shi H, Qian Y, Gao F. Signal-on and label-free electrochemical detection of amyloid β oligomers based on dual amplification induced hemin/G-quadruplex formation. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Del Rio JA, Ferrer I. Potential of Microfluidics and Lab-on-Chip Platforms to Improve Understanding of " prion-like" Protein Assembly and Behavior. Front Bioeng Biotechnol 2020; 8:570692. [PMID: 33015021 PMCID: PMC7506036 DOI: 10.3389/fbioe.2020.570692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Human aging is accompanied by a relevant increase in age-associated chronic pathologies, including neurodegenerative and metabolic diseases. The appearance and evolution of numerous neurodegenerative diseases is paralleled by the appearance of intracellular and extracellular accumulation of misfolded proteins in affected brains. In addition, recent evidence suggests that most of these amyloid proteins can behave and propagate among neural cells similarly to infective prions. In order to improve understanding of the seeding and spreading processes of these "prion-like" amyloids, microfluidics and 3D lab-on-chip approaches have been developed as highly valuable tools. These techniques allow us to monitor changes in cellular and molecular processes responsible for amyloid seeding and cell spreading and their parallel effects in neural physiology. Their compatibility with new optical and biochemical techniques and their relative availability have increased interest in them and in their use in numerous laboratories. In addition, recent advances in stem cell research in combination with microfluidic platforms have opened new humanized in vitro models for myriad neurodegenerative diseases affecting different cellular targets of the vascular, muscular, and nervous systems, and glial cells. These new platforms help reduce the use of animal experimentation. They are more reproducible and represent a potential alternative to classical approaches to understanding neurodegeneration. In this review, we summarize recent progress in neurobiological research in "prion-like" protein using microfluidic and 3D lab-on-chip approaches. These approaches are driven by various fields, including chemistry, biochemistry, and cell biology, and they serve to facilitate the development of more precise human brain models for basic mechanistic studies of cell-to-cell interactions and drug discovery.
Collapse
Affiliation(s)
- Jose A Del Rio
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
15
|
Jamerlan A, An SSA, Hulme J. Advances in amyloid beta oligomer detection applications in Alzheimer's disease. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Ruvalcaba-Cardenas AD, Gomez RAR, Khoshmanesh K, Tovar-Lopez FJ. Magnetic actuation and deformation of a soft shuttle. BIOMICROFLUIDICS 2020; 14:034103. [PMID: 32477442 PMCID: PMC7237223 DOI: 10.1063/5.0008176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/05/2020] [Indexed: 05/12/2023]
Abstract
Here, we describe the magnetic actuation of soft shuttles for open-top microfluidic applications. The system is comprised of two immiscible liquids, including glycerol as the soft shuttle and a suspension of iron powder in sucrose solution as the magnetic drop. Permanent magnets assembled on 3D printed motorized actuators were used for the actuation of the magnetic drop, enabling the glycerol shuttle to be propelled along customized linear, circular, and sinusoidal paths. The dynamics of the hybrid shuttle-magnetic drop system was governed by the magnetic force, the friction at the interface of the shuttle and the substrate, and the surface tension at the interface of the shuttle and the magnetic drop. Increasing the magnetic force leads to the localized deformation of the shuttle and eventually the full extraction of the magnetic drop. The versatility of the system was demonstrated through the propelling of the shuttle across a rough surface patterned with microfabricated barriers as well as taking advantage of the optical properties of the shuttle for the magnification and translation of microscale characters patterned on a planar surface. The integration of the system with current electrowetting actuation mechanisms enables the highly controlled motion of the magnetic drop on the surface of a moving shuttle. The simplicity, versatility, and controllability of the system provide opportunities for various fluid manipulation, sample preparation, and analysis for a range of chemical, biochemical, and biological applications.
Collapse
Affiliation(s)
- Ana Daysi Ruvalcaba-Cardenas
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Authors to whom correspondence should be addressed:; ; and
| | | | - Khashayar Khoshmanesh
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Authors to whom correspondence should be addressed:; ; and
| | - Francisco J. Tovar-Lopez
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
17
|
Rho HS, Veltkamp HW, Hanke AT, Ottens M, Breukers C, Habibović P, Gardeniers H. Systematic Investigation of Insulin Fibrillation on a Chip. Molecules 2020; 25:molecules25061380. [PMID: 32197443 PMCID: PMC7144930 DOI: 10.3390/molecules25061380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022] Open
Abstract
A microfluidic protein aggregation device (microPAD) that allows the user to perform a series of protein incubations with various concentrations of two reagents is demonstrated. The microfluidic device consists of 64 incubation chambers to perform individual incubations of the protein at 64 specific conditions. Parallel processes of metering reagents, stepwise concentration gradient generation, and mixing are achieved simultaneously by pneumatic valves. Fibrillation of bovine insulin was selected to test the device. The effect of insulin and sodium chloride (NaCl) concentration on the formation of fibrillar structures was studied by observing the growth rate of partially folded protein, using the fluorescent marker Thioflavin-T. Moreover, dual gradients of different NaCl and hydrochloric acid (HCl) concentrations were formed, to investigate their interactive roles in the formation of insulin fibrils and spherulites. The chip-system provides a bird’s eye view on protein aggregation, including an overview of the factors that affect the process and their interactions. This microfluidic platform is potentially useful for rapid analysis of the fibrillation of proteins associated with many misfolding-based diseases, such as quantitative and qualitative studies on amyloid growth.
Collapse
Affiliation(s)
- Hoon Suk Rho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands; (H.S.R.); (P.H.)
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Henk-Willem Veltkamp
- Integrated Devices and Systems Group, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Alexander Thomas Hanke
- BioProcess Engineering Group, Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, 2628 CD Delft, The Netherlands; (A.T.H.); (M.O.)
| | - Marcel Ottens
- BioProcess Engineering Group, Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, 2628 CD Delft, The Netherlands; (A.T.H.); (M.O.)
| | - Christian Breukers
- Medical Cell BioPhysics Group, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands; (H.S.R.); (P.H.)
| | - Han Gardeniers
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
- Correspondence: ; Tel.: +31-(0)53-489-4356
| |
Collapse
|
18
|
Ren HX, Miao YB, Zhang Y. An aptamer based fluorometric assay for amyloid-β oligomers using a metal-organic framework of type Ru@MIL-101(Al) and enzyme-assisted recycling. Mikrochim Acta 2020; 187:114. [PMID: 31919722 DOI: 10.1007/s00604-019-4092-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Amyloid-beta (Aβ) oligomers causing neuron damage are regarded as potential therapeutic targets and diagnostic markers for Alzheimer's disease (AD). A homogeneous turn-on fluorometric aptasensor is described for Aβ oligomers. It is highly selective and non-invasive and based on (a) the use of a luminescent metal-organic framework carrying aptamer-modified AuNPs (L-MOF/Apt-Au) as tracking agent, and (b) enzyme-assisted target recycling signal amplification. The tracking agent does not emit fluoresce by fluorescence resonance energy transfer (FRET) between the luminescent MOF as donor and Apt-Au as the acceptor under the excitation wavelength of 466 nm. When Aβ oligomers are added to the tracking agent solution, the Apt-Au on tracking agent can preferentially bind with Aβ oligomers and then be released. This turns the "off" signal of the luminescent MOF tracer to the "on" state. The enzyme (Rec Jf exonuclease) added into the supernatant further improves sensitivity due to enzyme-assisted target-recycling signal amplification. The assay has an excellent linear response to Aβ oligomers from 1.0 pM to 10 nM, with a detection limit of 0.3 pM. This homogeneous turn-on fluorometric method is expected to have potential and applications in clinical diagnosis. Graphical abstractSchematic representation of fluorometric assay for amyloid-β oligomers based on luminescence metal-organic framework nanocomposites as tracking agent with exonuclease-assisted target recycling.
Collapse
Affiliation(s)
- Hong-Xia Ren
- School of Chemistry and Chemical Engineering, Zunyi Normal College, Guizhou, 563006, China.
| | - Yang-Bao Miao
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yuandong Zhang
- School of Pharmacy, Zunyi Medical University, Guizhou, 563000, China
| |
Collapse
|
19
|
Zhang X, Sun L, Yu Y, Zhao Y. Flexible Ferrofluids: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903497. [PMID: 31583782 DOI: 10.1002/adma.201903497] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Ferrofluids, also known as ferromagnetic particle suspensions, are materials with an excellent magnetic response, which have attracted increasing interest in both industrial production and scientific research areas. Because of their outstanding features, such as rapid magnetic reaction, flexible flowability, as well as tunable optical and thermal properties, ferrofluids have found applications in various fields, including material science, physics, chemistry, biology, medicine, and engineering. Here, a comprehensive, in-depth insight into the diverse applications of ferrofluids from material fabrication, droplet manipulation, and biomedicine to energy and machinery is provided. Design of ferrofluid-related devices, recent developments, as well as present challenges and future prospects are also outlined.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
20
|
Zhang Y, Figueroa-Miranda G, Zafiu C, Willbold D, Offenhäusser A, Mayer D. Amperometric Aptasensor for Amyloid-β Oligomer Detection by Optimized Stem-Loop Structures with an Adjustable Detection Range. ACS Sens 2019; 4:3042-3050. [PMID: 31674772 DOI: 10.1021/acssensors.9b01630] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid-β oligomers (AβO) have become representative biomarkers for early diagnosis of Alzheimer's disease. Here, we report on an aptasensor based on stem-loop probes for sensitive and specific detection of AβO by an amperometric transducer principle using alternating current voltammetry (ACV). Stem-loop probes with redox-active moieties are immobilized on a gold substrate as a receptor element. The signal transduction mechanism relies on redox ferrocene (Fc) reporting via charge transfer on a molecular recognition event involving a conformational change of the molecular beacon. The stem-loop structures were optimized by considering the aptamers' stem length, spacer, and different ferrocene terminals. In addition, the sensor assembly and signal recording including aptamer concentration and ACV frequency dependence are discussed. Using the optimized stem-loop probe (B-3' Fc), the aptasensor showed a decrease of the Fc peak current induced by AβO binding within the broad concentration range spanning 6 orders of magnitude. Furthermore, the detection limit of the sensor can be further decreased by optimizing the ACV frequency, however at the cost of a narrowed detection range. In this work, a label-free electrochemical aptasensor is demonstrated, which facilitates the quantification of the concentration of AβO with high selectivity and subpicomolar sensitivity, which may be conducive to improving the diagnosis and pharmacology studies of Alzheimer's disease.
Collapse
Affiliation(s)
- Yuting Zhang
- Faculty I, RWTH Aachen, 52062 Aachen, North Rhine-Westphalia, Germany
| | | | | | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, North Rhine-Westphalia, Germany
| | | | | |
Collapse
|
21
|
Electroosmotic Flow of Viscoelastic Fluid in a Nanochannel Connecting Two Reservoirs. MICROMACHINES 2019; 10:mi10110747. [PMID: 31683717 PMCID: PMC6915621 DOI: 10.3390/mi10110747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/04/2023]
Abstract
: Electroosmotic flow (EOF) of viscoelastic fluid with Linear Phan-Thien-Tanner (LPTT) constitutive model in a nanochannel connecting two reservoirs is numerically studied. For the first time, the influence of viscoelasticity on the EOF and the ionic conductance in the micro-nanofluidic interconnect system, with consideration of the electrical double layers (EDLs), is investigated. Regardless of the bulk salt concentration, significant enhancement of the flow rate is observed for viscoelastic fluid compared to the Newtonian fluid, due to the shear thinning effect. An increase in the ionic conductance of the nanochannel occurs for the viscoelastic fluid. The enhancement of the ionic conductance is significant under the overlapping EDLs condition.
Collapse
|
22
|
Zilberzwige-Tal S, Gazit E. Go with the Flow-Microfluidics Approaches for Amyloid Research. Chem Asian J 2018; 13:3437-3447. [PMID: 30117682 DOI: 10.1002/asia.201801007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Indexed: 12/19/2022]
Abstract
The rapid development of cost-efficient microfluidic devices has received tremendous attention from scientists of diverse fields. The growing potential of utilizing microfluidic platforms has further advanced the ability to integrate existing technology into microfluidic devices. Thus, allowing scientists to approach questions in fundamental fields, such as amyloid research, using new and otherwise unachievable conditions. Amyloids are associated with neurodegeneration and are in the forefront of many research efforts worldwide. The newly emerged microfluidic technology can serve as a novel research tool providing a platform for developing new methods in this field. In this review, we summarize the recent progress in amyloid research using microfluidic approaches. These approaches are driven from various fields, including physical chemistry, electrochemistry, biochemistry, and cell biology. Moreover, the new insights into novel microfluidic approaches for amyloid research reviewed here can be easily modified for other research interests.
Collapse
Affiliation(s)
- Shai Zilberzwige-Tal
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology,George S. Wise Faculty of Life Sciences, Tel Aviv University⋅, Tel Aviv, 69978, Israel
| | - Ehud Gazit
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.,Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology,George S. Wise Faculty of Life Sciences, Tel Aviv University⋅, Tel Aviv, 69978, Israel
| |
Collapse
|
23
|
Chen X, Zhang S, Zhang L, Yao Z, Chen X, Zheng Y, Liu Y. Applications and theory of electrokinetic enrichment in micro-nanofluidic chips. Biomed Microdevices 2018; 19:19. [PMID: 28364179 DOI: 10.1007/s10544-017-0168-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review reports the progress on the recent development of electrokinetic enrichment in micro-nanofluidic chips. The governing equations of electrokinetic enrichment in micro-nanofluidic chips are given. Various enrichment applications including protein analysis, DNA analysis, bacteria analysis, viruses analysis and cell analysis are illustrated and discussed. The advantages and difficulties of each enrichment method are expatiated. This paper will provide a particularly convenient and valuable reference to those who intend to research the electrokinetic enrichment based on micro-nanofluidic chips.
Collapse
Affiliation(s)
- Xueye Chen
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, 121001, China.
| | - Shuai Zhang
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, 121001, China
| | - Lei Zhang
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, 121001, China
| | - Zhen Yao
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, 121001, China
| | - Xiaodong Chen
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, 121001, China
| | - Yue Zheng
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, 121001, China
| | - Yanlin Liu
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, 121001, China
| |
Collapse
|
24
|
Serra M, Ferraro D, Pereiro I, Viovy JL, Descroix S. The power of solid supports in multiphase and droplet-based microfluidics: towards clinical applications. LAB ON A CHIP 2017; 17:3979-3999. [PMID: 28948991 DOI: 10.1039/c7lc00582b] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiphase and droplet microfluidic systems are growing in relevance in bioanalytical-related fields, especially due to the increased sensitivity, faster reaction times and lower sample/reagent consumption of many of its derived bioassays. Often applied to homogeneous (liquid/liquid) reactions, innovative strategies for the implementation of heterogeneous (typically solid/liquid) processes have recently been proposed. These involve, for example, the extraction and purification of target analytes from complex matrices or the implementation of multi-step protocols requiring efficient washing steps. To achieve this, solid supports such as functionalized particles (micro or nanometric) presenting different physical properties (e.g. magnetic, optical or others) are used for the binding of specific entities. The manipulation of such supports with different microfluidic principles has both led to the miniaturization of existing biomedical protocols and the development of completely new strategies for diagnostics and research. In this review, multiphase and droplet-based microfluidic systems using solid suspensions are presented and discussed with a particular focus on: i) working principles and technological developments of the manipulation strategies and ii) applications, critically discussing the level of maturity of these systems, which can range from initial proofs of concept to real clinical validations.
Collapse
Affiliation(s)
- M Serra
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.
| | | | | | | | | |
Collapse
|
25
|
Xing Y, Feng XZ, Zhang L, Hou J, Han GC, Chen Z. A sensitive and selective electrochemical biosensor for the determination of beta-amyloid oligomer by inhibiting the peptide-triggered in situ assembly of silver nanoparticles. Int J Nanomedicine 2017; 12:3171-3179. [PMID: 28458538 PMCID: PMC5402878 DOI: 10.2147/ijn.s132776] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Soluble beta-amyloid (Aβ) oligomer is believed to be the most important toxic species in the brain of Alzheimer’s disease (AD) patients. Thus, it is critical to develop a simple method for the selective detection of Aβ oligomer with low cost and high sensitivity. In this paper, we report an electrochemical method for the detection of Aβ oligomer with a peptide as the bioreceptor and silver nanoparticle (AgNP) aggregates as the redox reporters. This strategy is based on the conversion of AgNP-based colorimetric assay into electrochemical analysis. Specifically, the peptide immobilized on the electrode surface and presented in solution triggered together the in situ formation of AgNP aggregates, which produced a well-defined electrochemical signal. However, the specific binding of Aβ oligomer to the immobilized peptide prevented the in situ assembly of AgNPs. As a result, a poor electrochemical signal was observed. The detection limit of the method was found to be 6 pM. Furthermore, the amenability of this method for the analysis of Aβ oligomer in serum and artificial cerebrospinal fluid (aCSF) samples was demonstrated.
Collapse
Affiliation(s)
- Yun Xing
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Lipeng Zhang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang
| | - Jiating Hou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
26
|
Jiang LF, Chen BC, Chen B, Li XJ, Liao HL, Huang HM, Guo ZJ, Zhang WY, Wu L. Detection of Aβ oligomers based on magnetic-field-assisted separation of aptamer-functionalized Fe 3O 4 magnetic nanoparticles and BaYF 5:Yb,Er nanoparticles as upconversion fluorescence labels. Talanta 2017; 170:350-357. [PMID: 28501180 DOI: 10.1016/j.talanta.2017.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/29/2017] [Accepted: 04/09/2017] [Indexed: 12/13/2022]
Abstract
A sensitive and stable bioassay for the detection of Aβ oligomer (Aβo), a potentially promising candidate biomarker for Alzheimer's disease (AD) diagnosis, was developed using Fe3O4 magnetic nanoparticles (MNPs) as the recognition and concentration elements and BaYF5:Yb,Er upconversion nanoparticles (UCNPs) as highly sensitive labels, conjugated with the Aβo aptamer (DNA1) and the complementary oligonucleotide of the Aβo aptamer (DNA2), respectively. The DNA1 hybridized with DNA2 to form the duplex structure on the surface of the MNPs/UCNPs nanocomposites probe. When the target Aβo was introduced, the aptamer DNA1 preferentially bound with Aβo and caused the dissociation of some complementary DNA2, liberating some UCNP-labeled complementary DNA2 and leading to a decreased upconversion fluorescent intensity on the surface of MNPs. The decreased fluorescence intensity of UCNPs was related to the concentration of Aβo in the range of 0.2-15nM with a detection limit of 36 pM. The developed method then was successfully applied to measure Aβo in artificial cerebrospinal fluid. Benefiting from the magnetic separation and concentration effect of MNPs, the high sensitivity of UCNPs, as well as the selectivity and stability of the aptamer, the present strategy offered valuable information related to early diagnosis of AD process.
Collapse
Affiliation(s)
- Ling-Feng Jiang
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Bo-Cheng Chen
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Ben Chen
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Xue-Jian Li
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Hai-Lin Liao
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Hong-Miao Huang
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Zhan-Jing Guo
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Wen-Yan Zhang
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Lin Wu
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
27
|
Abstract
A digital microfluidic platform manipulates droplets on an open surface. Magnetic digital microfluidics utilizes magnetic forces for actuation and offers unique advantages compared to other digital microfluidic platforms. First, the magnetic particles used in magnetic digital microfluidics have multiple functions. In addition to serving as actuators, they also provide a functional solid substrate for molecule binding, which enables a wide range of applications in molecular diagnostics and immunodiagnostics. Second, magnetic digital microfluidics can be manually operated in a "power-free" manner, which allows for operation in low-resource environments for point-of-care diagnostics where even batteries are considered a luxury item. This review covers research areas related to magnetic digital microfluidics. This paper first summarizes the current development of magnetic digital microfluidics. Various methods of droplet manipulation using magnetic forces are discussed, ranging from conventional magnetic particle-based actuation to the recent development of ferrofluids and magnetic liquid marbles. This paper also discusses several new approaches that use magnetically controlled flexible substrates for droplet manipulation. In addition, we emphasize applications of magnetic digital microfluidics in biosensing and medical diagnostics, and identify the current limitations of magnetic digital microfluidics. We provide a perspective on possible solutions to close these gaps. Finally, the paper discusses the future improvement of magnetic digital microfluidics to explore potential new research directions.
Collapse
Affiliation(s)
- Yi Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
28
|
Zhou Y, Zhang H, Liu L, Li C, Chang Z, Zhu X, Ye B, Xu M. Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers. Sci Rep 2016; 6:35186. [PMID: 27725775 PMCID: PMC5057102 DOI: 10.1038/srep35186] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023] Open
Abstract
Amyloid β-peptide (Aβ) in its oligomeric form is often considered as the most toxic species in Alzheimer's disease (AD), and thus Aβ oligomer is a potentially promising candidate biomarker for AD diagnosis. The development of a sensitive and reliable method for monitoring the Aβ oligomer levels in body fluids is an urgent requirement in order to predict the severity and progression at early or preclinical stages of AD. Here, we show a proof of concept for a sensitive and specific detection of Aβ oligomers by an antibody-aptamer sandwich assay. The antibodies of Aβ oligomers and a nanocomposite of gold nanoparticles with aptamer and thionine (aptamer-Au-Th) were used as the recognition element and the detection probe for specifically binding to Aβ oligomers, respectively. The electrochemical signal of Th reduction could provide measurable electrochemical signals, and a low limit of detection (100 pM) was achieved due to the signal amplification by high loading of Th on the gold nanoparticles. The feasibility of the assay was verified by test of Aβ oligomers in artificial cerebrospinal fluid. The proposed strategy presents valuable information related to early diagnosis of AD process.
Collapse
Affiliation(s)
- Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huanqing Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lantao Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Congming Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhu Chang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Xu Zhu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|