1
|
Mathur P, Fomitcheva Khartchenko A, Stavrakis S, Kaigala GV, deMello AJ. Quantifying Antibody Binding Kinetics on Fixed Cells and Tissues via Fluorescence Lifetime Imaging. Anal Chem 2022; 94:10967-10975. [PMID: 35895913 DOI: 10.1021/acs.analchem.2c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a method for monitoring spatially localized antigen-antibody binding events on physiologically relevant substrates (cell and tissue sections) using fluorescence lifetime imaging. Specifically, we use the difference between the fluorescence decay times of fluorescently tagged antibodies in free solution and in the bound state to track the bound fraction over time and hence deduce the binding kinetics. We make use of a microfluidic probe format to minimize the mass transport effects and localize the analysis to specific regions of interest on the biological substrates. This enables measurement of binding constants (kon) on surface-bound antigens and on cell blocks using model biomarkers. Finally, we directly measure p53 kinetics with differential biomarker expression in ovarian cancer tissue sections, observing that the degree of expression corresponds to the changes in kon, with values of 3.27-3.50 × 103 M-1 s-1 for high biomarker expression and 2.27-2.79 × 103 M-1 s-1 for low biomarker expression.
Collapse
Affiliation(s)
- Prerit Mathur
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied Biosciences, Eidgenössische Technische Hochschule (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland.,IBM Research Europe─Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Anna Fomitcheva Khartchenko
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied Biosciences, Eidgenössische Technische Hochschule (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland.,IBM Research Europe─Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied Biosciences, Eidgenössische Technische Hochschule (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Govind V Kaigala
- IBM Research Europe─Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied Biosciences, Eidgenössische Technische Hochschule (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Delamarche E, Pereiro I, Kashyap A, Kaigala GV. Biopatterning: The Art of Patterning Biomolecules on Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9637-9651. [PMID: 34347483 DOI: 10.1021/acs.langmuir.1c00867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Patterning biomolecules on surfaces provides numerous opportunities for miniaturizing biological assays; biosensing; studying proteins, cells, and tissue sections; and engineering surfaces that include biological components. In this Feature Article, we summarize the themes presented in our recent Langmuir Lecture on patterning biomolecules on surfaces, miniaturizing surface assays, and interacting with biointerfaces using three key technologies: microcontact printing, microfluidic networks, and microfluidic probes.
Collapse
Affiliation(s)
- Emmanuel Delamarche
- IBM Research Europe-Zurich, Säumerstrasse 4, Rüschlikon CH-8803, Switzerland
| | - Iago Pereiro
- IBM Research Europe-Zurich, Säumerstrasse 4, Rüschlikon CH-8803, Switzerland
| | - Aditya Kashyap
- IBM Research Europe-Zurich, Säumerstrasse 4, Rüschlikon CH-8803, Switzerland
| | - Govind V Kaigala
- IBM Research Europe-Zurich, Säumerstrasse 4, Rüschlikon CH-8803, Switzerland
| |
Collapse
|
3
|
Shi N, Mohibullah M, Easley CJ. Active Flow Control and Dynamic Analysis in Droplet Microfluidics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:133-153. [PMID: 33979546 PMCID: PMC8956363 DOI: 10.1146/annurev-anchem-122120-042627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Droplet-based microfluidics has emerged as an important subfield within the microfluidic and general analytical communities. Indeed, several unique applications such as digital assay readout and single-cell sequencing now have commercial systems based on droplet microfluidics. Yet there remains room for this research area to grow. To date, most analytical readouts are optical in nature, relatively few studies have integrated sample preparation, and passive means for droplet formation and manipulation have dominated the field. Analytical scientists continue to expand capabilities by developing droplet-compatible method adaptations, for example, by interfacing to mass spectrometers or automating droplet sampling for temporally resolved analysis. In this review, we highlight recently developed fluidic control techniques and unique integrations of analytical methodology with droplet microfluidics-focusing on automation and the connections to analog/digital domains-and we conclude by offering a perspective on current challenges and future applications.
Collapse
Affiliation(s)
- Nan Shi
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA;
| | - Md Mohibullah
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA;
| | - Christopher J Easley
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA;
| |
Collapse
|
4
|
Shinha K, Nihei W, Kimura H. A Microfluidic Probe Integrated Device for Spatiotemporal 3D Chemical Stimulation in Cells. MICROMACHINES 2020; 11:mi11070691. [PMID: 32708814 PMCID: PMC7408473 DOI: 10.3390/mi11070691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
Numerous in vitro studies have been conducted in conventional static cell culture systems. However, most of the results represent an average response from a population of cells regardless of their local microenvironment. A microfluidic probe is a non-contact technology that has been widely used to perform local chemical stimulation within a restricted space, providing elaborated modulation and analysis of cellular responses within the microenvironment. Although microfluidic probes developed earlier have various potential applications, the two-dimensional structure can compromise their functionality and flexibility for practical use. In this study, we developed a three-dimensional microfluidic probe integrated device equipped with vertically oriented microchannels to overcome crucial challenges and tested the potential utility of the device in biological research. We demonstrated that the device tightly regulated spatial diffusion of a fluorescent molecule, and the flow profile predicted by simulation replicated the experimental results. Additionally, the device modulated the physiological Ca2+ response of cells within the restricted area by altering the local and temporal concentrations of biomolecules such as ATP. The novel device developed in this study may provide various applications for biological studies and contribute to further understanding of molecular mechanisms underlying cellular physiology.
Collapse
Affiliation(s)
- Kenta Shinha
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan; (K.S.); (W.N.)
| | - Wataru Nihei
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan; (K.S.); (W.N.)
- Micro/Nano Technology Center (MNTC), Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan; (K.S.); (W.N.)
- Micro/Nano Technology Center (MNTC), Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
- Correspondence: ; Tel.: +81-463-58-1211
| |
Collapse
|
5
|
Rodriguez-Mateos P, Azevedo NF, Almeida C, Pamme N. FISH and chips: a review of microfluidic platforms for FISH analysis. Med Microbiol Immunol 2020; 209:373-391. [PMID: 31965296 PMCID: PMC7248050 DOI: 10.1007/s00430-019-00654-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Fluorescence in situ hybridization (FISH) allows visualization of specific nucleic acid sequences within an intact cell or a tissue section. It is based on molecular recognition between a fluorescently labeled probe that penetrates the cell membrane of a fixed but intact sample and hybridizes to a nucleic acid sequence of interest within the cell, rendering a measurable signal. FISH has been applied to, for example, gene mapping, diagnosis of chromosomal aberrations and identification of pathogens in complex samples as well as detailed studies of cellular structure and function. However, FISH protocols are complex, they comprise of many fixation, incubation and washing steps involving a range of solvents and temperatures and are, thus, generally time consuming and labor intensive. The complexity of the process, the relatively high-priced fluorescent probes and the fairly high-end microscopy needed for readout render the whole process costly and have limited wider uptake of this powerful technique. In recent years, there have been attempts to transfer FISH assay protocols onto microfluidic lab-on-a-chip platforms, which reduces the required amount of sample and reagents, shortens incubation times and, thus, time to complete the protocol, and finally has the potential for automating the process. Here, we review the wide variety of approaches for lab-on-chip-based FISH that have been demonstrated at proof-of-concept stage, ranging from FISH analysis of immobilized cell layers, and cells trapped in arrays, to FISH on tissue slices. Some researchers have aimed to develop simple devices that interface with existing equipment and workflows, whilst others have aimed to integrate the entire FISH protocol into a fully autonomous FISH on-chip system. Whilst the technical possibilities for FISH on-chip are clearly demonstrated, only a small number of approaches have so far been converted into off-the-shelf products for wider use beyond the research laboratory.
Collapse
Affiliation(s)
- Pablo Rodriguez-Mateos
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Nuno Filipe Azevedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
- Biomode SA, Av. Mestre José Veiga, 4715-330, Braga, Portugal
| | - Carina Almeida
- Biomode SA, Av. Mestre José Veiga, 4715-330, Braga, Portugal
- INIAV, I.P.-National Institute for Agricultural and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, 4485-655, Vila Do Conde, Portugal
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Nicole Pamme
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
6
|
Verlinden EJ, Madadelahi M, Sarajlic E, Shamloo A, Engel AH, Staufer U, Ghatkesar MK. Volume and concentration dosing in picolitres using a two-channel microfluidic AFM cantilever. NANOSCALE 2020; 12:10292-10305. [PMID: 32363366 DOI: 10.1039/c9nr10494a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We introduce a two-channel microfluidic atomic force microscopy (AFM) cantilever that combines the nanomechanical sensing functionality of an AFM cantilever with the ability to manipulate fluids of picolitres or smaller volumes through nanoscale apertures near the cantilever tip. Each channel is connected to a separate fluid reservoir, which can be independently controlled by pressure. Various systematic experiments with fluorescent liquids were done by either injecting the liquids from the on-chip reservoir or aspirating directly through the nanoscale apertures at the tip. A flow rate analysis of volume dosing, aspiration and concentration dosing inside the liquid medium was performed. To understand the fluid behaviour, an analytical model based on the hydrodynamic resistance, as well as numerical flow simulations of single and multi-phase conditions were performed and compared. By applying pressures between -500 mbar and 500 mbar to the reservoirs of the probe with respect to the ambient pressure, flow rates ranging from 10 fl s-1 to 83 pl s-1 were obtained inside the channels of the cantilever as predicted by the analytical model. The smallest dosing flow rate through the apertures was 720 fl s-1, which was obtained with a 10 mbar pressure on one reservoir and ambient pressure on the other. The solute concentration in the outflow could be tuned to values between 0% and 100% by pure convection and to values between 17.5% and 90% in combination with diffusion. The results prove that this new probe enables handling multiple fluids with the scope to inject different concentrations of analytes inside a single living cell and also perform regular AFM functionalities.
Collapse
Affiliation(s)
- E J Verlinden
- Department of Precision and Microsystems Engineering, Delft University of Technology, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
7
|
Ostromohov N, Rofman B, Bercovici M, Kaigala G. Electrokinetic Scanning Probe. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904268. [PMID: 31885215 DOI: 10.1002/smll.201904268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The theoretical analysis and experimental demonstration of a new concept are presented for a non-contact scanning probe, in which transport of fluid and molecules is controlled by electric fields. The electrokinetic scanning probe (ESP) enables local chemical and biochemical interactions with surfaces in liquid environments. The physical mechanism and design criteria for such a probe are presented, and its compatibility with a wide range of processing solutions and pH values are demonstrated. The applicability of the probe is shown for surface patterning in conjunction with localized heating and 250-fold analyte stacking.
Collapse
Affiliation(s)
- Nadya Ostromohov
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- IBM Research-Zurich, Saeumerstrasse 4, CH-8803, Rueschlikon, Switzerland
| | - Baruch Rofman
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Moran Bercovici
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Govind Kaigala
- IBM Research-Zurich, Saeumerstrasse 4, CH-8803, Rueschlikon, Switzerland
| |
Collapse
|
8
|
Taylor DP, Kaigala GV. Fluidic Bypass Structures for Improving the Robustness of Liquid Scanning Probes. IEEE Trans Biomed Eng 2019; 66:2491-2498. [DOI: 10.1109/tbme.2018.2890602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Feng S, Shirani E, Inglis DW. Droplets for Sampling and Transport of Chemical Signals in Biosensing: A Review. BIOSENSORS 2019; 9:E80. [PMID: 31226857 PMCID: PMC6627903 DOI: 10.3390/bios9020080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
The chemical, temporal, and spatial resolution of chemical signals that are sampled and transported with continuous flow is limited because of Taylor dispersion. Droplets have been used to solve this problem by digitizing chemical signals into discrete segments that can be transported for a long distance or a long time without loss of chemical, temporal or spatial precision. In this review, we describe Taylor dispersion, sampling theory, and Laplace pressure, and give examples of sampling probes that have used droplets to sample or/and transport fluid from a continuous medium, such as cell culture or nerve tissue, for external analysis. The examples are categorized, as follows: (1) Aqueous-phase sampling with downstream droplet formation; (2) preformed droplets for sampling; and (3) droplets formed near the analyte source. Finally, strategies for downstream sample recovery for conventional analysis are described.
Collapse
Affiliation(s)
- Shilun Feng
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
| | - Elham Shirani
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
10
|
Ostromohov N, Huber D, Bercovici M, Kaigala GV. Real-Time Monitoring of Fluorescence in Situ Hybridization Kinetics. Anal Chem 2018; 90:11470-11477. [DOI: 10.1021/acs.analchem.8b02630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Nadya Ostromohov
- IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Zurich, Switzerland
- Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Deborah Huber
- IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Zurich, Switzerland
| | - Moran Bercovici
- Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Govind V. Kaigala
- IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Zurich, Switzerland
| |
Collapse
|
11
|
Huber D, Kaigala GV. Rapid micro fluorescence in situ hybridization in tissue sections. BIOMICROFLUIDICS 2018; 12:042212. [PMID: 29887936 PMCID: PMC5976495 DOI: 10.1063/1.5023775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/29/2018] [Indexed: 05/04/2023]
Abstract
This paper describes a micro fluorescence in situ hybridization (μFISH)-based rapid detection of cytogenetic biomarkers on formalin-fixed paraffin embedded (FFPE) tissue sections. We demonstrated this method in the context of detecting human epidermal growth factor 2 (HER2) in breast tissue sections. This method uses a non-contact microfluidic scanning probe (MFP), which localizes FISH probes at the micrometer length-scale to selected cells of the tissue section. The scanning ability of the MFP allows for a versatile implementation of FISH on tissue sections. We demonstrated the use of oligonucleotide FISH probes in ethylene carbonate-based buffer enabling rapid hybridization within <1 min for chromosome enumeration and 10-15 min for assessment of the HER2 status in FFPE sections. We further demonstrated recycling of FISH probes for multiple sequential tests using a defined volume of probes by forming hierarchical hydrodynamic flow confinements. This microscale method is compatible with the standard FISH protocols and with the Instant Quality FISH assay and reduces the FISH probe consumption ∼100-fold and the hybridization time 4-fold, resulting in an assay turnaround time of <3 h. We believe that rapid μFISH has the potential of being used in pathology workflows as a standalone method or in combination with other molecular methods for diagnostic and prognostic analysis of FFPE sections.
Collapse
|
12
|
Abstract
Isolated microfluidic stagnation points – formed within microfluidic interfaces – have come a long way as a tool for characterizing materials, manipulating micro particles, and generating confined flows and localized chemistries.
Collapse
Affiliation(s)
- Ayoola T. Brimmo
- Division of Engineering
- New York University Abu Dhabi
- Abu Dhabi
- UAE
- Tandon School of Engineering
| | - Mohammad A. Qasaimeh
- Division of Engineering
- New York University Abu Dhabi
- Abu Dhabi
- UAE
- Tandon School of Engineering
| |
Collapse
|
13
|
Horayama M, Shinha K, Kabayama K, Fujii T, Kimura H. Spatial Chemical Stimulation Control in Microenvironment by Microfluidic Probe Integrated Device for Cell-Based Assay. PLoS One 2016; 11:e0168158. [PMID: 27930750 PMCID: PMC5145238 DOI: 10.1371/journal.pone.0168158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022] Open
Abstract
Cell—cell interactions play an important role in the development and function of multicellular organisms. To investigate these interactions in detail, it is necessary to evaluate the behavior of a cell population when the minimum number of cells in the population is stimulated by some chemical factors. We propose a microfluidic device integrated with microfluidic probe (MFP) functionality; this device is capable of imparting a chemical stimulus to cells within a microenvironment, for cell-based assays. The device contains MFP channels at the walls of the cell culture microchannels, and it can control a localized chemical stimulation area at the scale of a single cell to a few cells using MFP fluid control in a microspace. The results of a finite element method-based simulation indicated that it is possible to control the chemical stimulation area at the scale of a single cell to a few cells by optimizing the MFP channel apex width and the flow ratio. In addition, localized cell staining was demonstrated successfully using a spatial chemical stimulus. We confirmed the device functionality as a novel cell-based assay tool. We succeeded in performing localized cell collection using this method, which suggested that the single cell analysis of a cell monolayer that is subjected to a specific chemical stimulus is possible. The method proposed in this paper can contribute significantly to the fields of cell biology and drug development.
Collapse
Affiliation(s)
- Masayuki Horayama
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Kenta Shinha
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Osaka University, Toyonaka, Osaka, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Teruo Fujii
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Kanagawa, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
14
|
Cors JF, Stucki A, Kaigala GV. Hydrodynamic thermal confinement: creating thermo-chemical microenvironments on surfaces. Chem Commun (Camb) 2016; 52:13035-13038. [DOI: 10.1039/c6cc08018a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present a new, general concept termed Hydrodynamic Thermal Confinement (HTC), and its implementation for the creation of microscale dynamic thermo-chemical microenvironments on biological surfaces. We demonstrate selective DNA denaturation of single spots on a microarray using a 15% formamide solution at 60 °C.
Collapse
Affiliation(s)
- J. F. Cors
- IBM Research – Zurich
- 8803 Rüschlikon
- Switzerland
| | - A. Stucki
- IBM Research – Zurich
- 8803 Rüschlikon
- Switzerland
| | | |
Collapse
|