1
|
Ahmadi F, Tran H, Letourneau N, Little SR, Fortin A, Moraitis AN, Shih SCC. An Automated Single-Cell Droplet-Digital Microfluidic Platform for Monoclonal Antibody Discovery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308950. [PMID: 38441226 DOI: 10.1002/smll.202308950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Indexed: 06/27/2024]
Abstract
Monoclonal antibody (mAb) discovery plays a prominent role in diagnostic and therapeutic applications. Droplet microfluidics has become a standard technology for high-throughput screening of antibody-producing cells due to high droplet single-cell confinement frequency and rapid analysis and sorting of the cells of interest with their secreted mAbs. In this work, a new method is described for on-demand co-encapsulation of cells that eliminates the difficulties associated with washing in between consecutive steps inside the droplets and enables the washing and addition of fresh media. The new platform identifies hybridoma cells that are expressing antibodies of interest using antibody-characterization assays to find the best-performing or rare-cell antibody candidates.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Hao Tran
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada
| | - Natasha Letourneau
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Samuel R Little
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Annie Fortin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, H4P 2R2, Canada
| | - Anna N Moraitis
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, H4P 2R2, Canada
| | - Steve C C Shih
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
2
|
Yang H, Jiang L, Guo K, Xiang N. Static droplet array for the synthesis of nonspherical microparticles. Electrophoresis 2023; 44:563-572. [PMID: 36593724 DOI: 10.1002/elps.202200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
We reported a manually operated static droplet array (SDA)-based device for the synthesis of nonspherical microparticles with different shapes. The improved SDA structure and reversible bonding between poly(dimethylsiloxane) (PDMS) were used in the device for the large-scale synthesis and rapid extraction of nonspherical microparticles. To understand the device physics, the effects of flow rate, SDA well size, and shape on droplet generation performances were explored. The results indicated that droplet generation in SDA structures was insensitive to the flow rate, and monodisperse droplets were generated by the SDA-based device through manually pushing the syringe. Finally, we integrated four kinds of SDA structures in one device and successfully realized the synthesis and extraction of nonspherical microparticles with different shapes and materials. Our SDA-based device offers numerous advantages, such as simple manual operation, low equipment cost, controllable microparticle shapes and sizes, and large-scale production. Thus, it holds the potential to be used as a flexible tool for the production of nonspherical microparticles.
Collapse
Affiliation(s)
- Hang Yang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
3
|
Wang Y, Liu M, Zhang Y, Liu H, Han L. Recent methods of droplet microfluidics and their applications in spheroids and organoids. LAB ON A CHIP 2023; 23:1080-1096. [PMID: 36628972 DOI: 10.1039/d2lc00493c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Droplet microfluidic techniques have long been known as a high-throughput approach for cell manipulation. The capacity to compartmentalize cells into picolitre droplets in microfluidic devices has opened up a range of new ways to extract information from cells. Spheroids and organoids are crucial in vitro three-dimensional cell culture models that physiologically mimic natural tissues and organs. With the aid of developments in cell biology and materials science, droplet microfluidics has been applied to construct spheroids and organoids in numerous formats. In this article, we divide droplet microfluidic approaches for managing spheroids and organoids into three categories based on the droplet module format: liquid droplet, microparticle, and microcapsule. We discuss current advances in the use of droplet microfluidics for the generation of tumour spheroids, stem cell spheroids, and organoids, as well as the downstream applications of these methods in high-throughput screening and tissue engineering.
Collapse
Affiliation(s)
- Yihe Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Mengqi Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 P. R. China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100 P. R. China
| |
Collapse
|
4
|
Tevlek A, Kecili S, Ozcelik OS, Kulah H, Tekin HC. Spheroid Engineering in Microfluidic Devices. ACS OMEGA 2023; 8:3630-3649. [PMID: 36743071 PMCID: PMC9893254 DOI: 10.1021/acsomega.2c06052] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) cell culture techniques are commonly employed to investigate biophysical and biochemical cellular responses. However, these culture methods, having monolayer cells, lack cell-cell and cell-extracellular matrix interactions, mimicking the cell microenvironment and multicellular organization. Three-dimensional (3D) cell culture methods enable equal transportation of nutrients, gas, and growth factors among cells and their microenvironment. Therefore, 3D cultures show similar cell proliferation, apoptosis, and differentiation properties to in vivo. A spheroid is defined as self-assembled 3D cell aggregates, and it closely mimics a cell microenvironment in vitro thanks to cell-cell/matrix interactions, which enables its use in several important applications in medical and clinical research. To fabricate a spheroid, conventional methods such as liquid overlay, hanging drop, and so forth are available. However, these labor-intensive methods result in low-throughput fabrication and uncontrollable spheroid sizes. On the other hand, microfluidic methods enable inexpensive and rapid fabrication of spheroids with high precision. Furthermore, fabricated spheroids can also be cultured in microfluidic devices for controllable cell perfusion, simulation of fluid shear effects, and mimicking of the microenvironment-like in vivo conditions. This review focuses on recent microfluidic spheroid fabrication techniques and also organ-on-a-chip applications of spheroids, which are used in different disease modeling and drug development studies.
Collapse
Affiliation(s)
- Atakan Tevlek
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
| | - Seren Kecili
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Ozge S. Ozcelik
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Haluk Kulah
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - H. Cumhur Tekin
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| |
Collapse
|
5
|
Chen Z, Kheiri S, Young EWK, Kumacheva E. Trends in Droplet Microfluidics: From Droplet Generation to Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6233-6248. [PMID: 35561292 DOI: 10.1021/acs.langmuir.2c00491] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the past decade, droplet microfluidics has attracted growing interest in biology, medicine, and engineering. In this feature article, we review the advances in droplet microfluidics, primarily focusing on the research conducted by our group. Starting from the introduction to the mechanisms of microfluidic droplet formation and the strategies for cell encapsulation in droplets, we then focus on droplet transformation into microgels. Furthermore, we review three biomedical applications of droplet microfluidics, that is, 3D cell culture, single-cell analysis, and in vitro organ and disease modeling. We conclude with our perspective on future directions in the development of droplet microfluidics for biomedical applications.
Collapse
Affiliation(s)
- Zhengkun Chen
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8
| | - Edmond W K Young
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8
- Institute of Biomedical Engineering, University of Toronto, Roseburgh Building, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
- Institute of Biomedical Engineering, University of Toronto, Roseburgh Building, 164 College Street, Toronto, Ontario, Canada M5S 3G9
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
| |
Collapse
|
6
|
Abstract
Cell manipulation in droplets has emerged as one of the great successes of microfluidic technologies, with the development of single-cell screening. However, the droplet format has also served to go beyond single-cell studies, namely by considering the interactions between different cells or between cells and their physical or chemical environment. These studies pose specific challenges linked to the need for long-term culture of adherent cells or the diverse types of measurements associated with complex biological phenomena. Here we review the emergence of droplet microfluidic methods for culturing cells and studying their interactions. We begin by characterizing the quantitative aspects that determine the ability to encapsulate cells, transport molecules, and provide sufficient nutrients within the droplets. This is followed by an evaluation of the biological constraints such as the control of the biochemical environment and promoting the anchorage of adherent cells. This first part ends with a description of measurement methods that have been developed. The second part of the manuscript focuses on applications of these technologies for cancer studies, immunology, and stem cells while paying special attention to the biological relevance of the cellular assays and providing guidelines on improving this relevance.
Collapse
Affiliation(s)
- Sébastien Sart
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gustave Ronteix
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Shreyansh Jain
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gabriel Amselem
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Charles N Baroud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
7
|
Kheiri S, Kumacheva E, Young EWK. Computational Modelling and Big Data Analysis of Flow and Drug Transport in Microfluidic Systems: A Spheroid-on-a-Chip Study. Front Bioeng Biotechnol 2021; 9:781566. [PMID: 34888303 PMCID: PMC8650096 DOI: 10.3389/fbioe.2021.781566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Microfluidic tumour spheroid-on-a-chip platforms enable control of spheroid size and their microenvironment and offer the capability of high-throughput drug screening, but drug supply to spheroids is a complex process that depends on a combination of mechanical, biochemical, and biophysical factors. To account for these coupled effects, many microfluidic device designs and operating conditions must be considered and optimized in a time- and labour-intensive trial-and-error process. Computational modelling facilitates a systematic exploration of a large design parameter space via in silico simulations, but the majority of in silico models apply only a small set of conditions or parametric levels. Novel approaches to computational modelling are needed to explore large parameter spaces and accelerate the optimization of spheroid-on-a-chip and other organ-on-a-chip designs. Here, we report an efficient computational approach for simulating fluid flow and transport of drugs in a high-throughput arrayed cancer spheroid-on-a-chip platform. Our strategy combines four key factors: i) governing physical equations; ii) parametric sweeping; iii) parallel computing; and iv) extensive dataset analysis, thereby enabling a complete “full-factorial” exploration of the design parameter space in combinatorial fashion. The simulations were conducted in a time-efficient manner without requiring massive computational time. As a case study, we simulated >15,000 microfluidic device designs and flow conditions for a representative multicellular spheroids-on-a-chip arrayed device, thus acquiring a single dataset consisting of ∼10 billion datapoints in ∼95 GBs. To validate our computational model, we performed physical experiments in a representative spheroid-on-a-chip device that showed excellent agreement between experimental and simulated data. This study offers a computational strategy to accelerate the optimization of microfluidic device designs and provide insight on the flow and drug transport in spheroid-on-a-chip and other biomicrofluidic platforms.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Edmond W K Young
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. Int J Mol Sci 2021; 22:12200. [PMID: 34830082 PMCID: PMC8618305 DOI: 10.3390/ijms222212200] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 01/09/2023] Open
Abstract
The traditional two-dimensional (2D) in vitro cell culture system (on a flat support) has long been used in cancer research. However, this system cannot be fully translated into clinical trials to ideally represent physiological conditions. This culture cannot mimic the natural tumor microenvironment due to the lack of cellular communication (cell-cell) and interaction (cell-cell and cell-matrix). To overcome these limitations, three-dimensional (3D) culture systems are increasingly developed in research and have become essential for tumor research, tissue engineering, and basic biology research. 3D culture has received much attention in the field of biomedicine due to its ability to mimic tissue structure and function. The 3D matrix presents a highly dynamic framework where its components are deposited, degraded, or modified to delineate functions and provide a platform where cells attach to perform their specific functions, including adhesion, proliferation, communication, and apoptosis. So far, various types of models belong to this culture: either the culture based on natural or synthetic adherent matrices used to design 3D scaffolds as biomaterials to form a 3D matrix or based on non-adherent and/or matrix-free matrices to form the spheroids. In this review, we first summarize a comparison between 2D and 3D cultures. Then, we focus on the different components of the natural extracellular matrix that can be used as supports in 3D culture. Then we detail different types of natural supports such as matrigel, hydrogels, hard supports, and different synthetic strategies of 3D matrices such as lyophilization, electrospiding, stereolithography, microfluid by citing the advantages and disadvantages of each of them. Finally, we summarize the different methods of generating normal and tumor spheroids, citing their respective advantages and disadvantages in order to obtain an ideal 3D model (matrix) that retains the following characteristics: better biocompatibility, good mechanical properties corresponding to the tumor tissue, degradability, controllable microstructure and chemical components like the tumor tissue, favorable nutrient exchange and easy separation of the cells from the matrix.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|
9
|
Qu F, Zhao S, Cheng G, Rahman H, Xiao Q, Chan RWY, Ho YP. Double emulsion-pretreated microwell culture for the in vitro production of multicellular spheroids and their in situ analysis. MICROSYSTEMS & NANOENGINEERING 2021; 7:38. [PMID: 34567752 PMCID: PMC8433470 DOI: 10.1038/s41378-021-00267-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 05/28/2023]
Abstract
Multicellular spheroids have served as a promising preclinical model for drug efficacy testing and disease modeling. Many microfluidic technologies, including those based on water-oil-water double emulsions, have been introduced for the production of spheroids. However, sustained culture and the in situ characterization of the generated spheroids are currently unavailable for the double emulsion-based spheroid model. This study presents a streamlined workflow, termed the double emulsion-pretreated microwell culture (DEPMiC), incorporating the features of (1) effective initiation of uniform-sized multicellular spheroids by the pretreatment of double emulsions produced by microfluidics without the requirement of biomaterial scaffolds; (2) sustained maintenance and culture of the produced spheroids with facile removal of the oil confinement; and (3) in situ characterization of individual spheroids localized in microwells by a built-in analytical station. Characterized by microscopic observations and Raman spectroscopy, the DEPMiC cultivated spheroids accumulated elevated lipid ordering on the apical membrane, similar to that observed in their Matrigel counterparts. Made possible by the proposed technological advancement, this study subsequently examined the drug responses of these in vitro-generated multicellular spheroids. The developed DEPMiC platform is expected to generate health benefits in personalized cancer treatment by offering a pre-animal tool to dissect heterogeneity from individual tumor spheroids.
Collapse
Affiliation(s)
- Fuyang Qu
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Shirui Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Guangyao Cheng
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Habibur Rahman
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Qinru Xiao
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Renee Wan Yi Chan
- CUHK-UMCU Joint Research Laboratory of Respiratory Virus and Immunobiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Laboratory for Paediatric Respiratory Research, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
10
|
Tse HM, Gardner G, Dominguez-Bendala J, Fraker CA. The Importance of Proper Oxygenation in 3D Culture. Front Bioeng Biotechnol 2021; 9:634403. [PMID: 33859979 PMCID: PMC8042214 DOI: 10.3389/fbioe.2021.634403] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cell culture typically employs inexpensive, disposable plasticware, and standard humidified CO2/room air incubators (5% CO2, ∼20% oxygen). These methods have historically proven adequate for the maintenance of viability, function, and proliferation of many cell types, but with broad variation in culture practices. With technological advances it is becoming increasingly clear that cell culture is not a “one size fits all” procedure. Recently, there is a shift toward comprehension of the individual physiological niches of cultured cells. As scale-up production of single cell and 3D aggregates for therapeutic applications has expanded, researchers have focused on understanding the role of many environmental metabolites/forces on cell function and viability. Oxygen, due to its role in cell processes and the requirement for adequate supply to maintain critical energy generation, is one such metabolite gaining increased focus. With the advent of improved sensing technologies and computational predictive modeling, it is becoming evident that parameters such as cell seeding density, culture media height, cellular oxygen consumption rate, and aggregate dimensions should be considered for experimental reproducibility. In this review, we will examine the role of oxygen in 3D cell culture with particular emphasis on primary islets of Langerhans and stem cell-derived insulin-producing SC-β cells, both known for their high metabolic demands. We will implement finite element modeling (FEM) to simulate historical and current culture methods in referenced manuscripts and innovations focusing on oxygen distribution. Our group and others have shown that oxygen plays a key role in proliferation, differentiation, and function of these 3D aggregates. Their culture in plastic consistently results in core regions of hypoxia/anoxia exacerbated by increased media height, aggregate dimensions, and oxygen consumption rates. Static gas permeable systems ameliorate this problem. The use of rotational culture and other dynamic culture systems also have advantages in terms of oxygen supply but come with the caveat that these endocrine aggregates are also exquisitely sensitive to mechanical perturbation. As recent work demonstrates, there is a strong rationale for the use of alternate in vitro systems to maintain physio-normal environments for cell growth and function for better phenotypic approximation of in vivo counterparts.
Collapse
Affiliation(s)
- Hubert M Tse
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Graeme Gardner
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | - Juan Dominguez-Bendala
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States.,Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Christopher A Fraker
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
11
|
Shen H, Cai S, Wu C, Yang W, Yu H, Liu L. Recent Advances in Three-Dimensional Multicellular Spheroid Culture and Future Development. MICROMACHINES 2021; 12:96. [PMID: 33477508 PMCID: PMC7831097 DOI: 10.3390/mi12010096] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Three-dimensional multicellular spheroids (MCSs) have received extensive attention in the field of biomedicine due to their ability to simulate the structure and function of tissues in vivo more accurately than traditional in vitro two-dimensional models and to simulate cell-cell and cell extracellular matrix (ECM) interactions. It has become an important in vitro three-dimensional model for tumor research, high-throughput drug screening, tissue engineering, and basic biology research. In the review, we first summarize methods for MCSs generation and their respective advantages and disadvantages and highlight the advances of hydrogel and microfluidic systems in the generation of spheroids. Then, we look at the application of MCSs in cancer research and other aspects. Finally, we discuss the development direction and prospects of MCSs.
Collapse
Affiliation(s)
- Honglin Shen
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Chuanxiang Wu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| |
Collapse
|
12
|
Shi Y, Cai Y, Cao Y, Hong Z, Chai Y. Recent advances in microfluidic technology and applications for anti-cancer drug screening. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Characterising a PDMS based 3D cell culturing microfluidic platform for screening chemotherapeutic drug cytotoxic activity. Sci Rep 2020; 10:15915. [PMID: 32985610 PMCID: PMC7522244 DOI: 10.1038/s41598-020-72952-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) spheroidal cell cultures are now recognised as better models of cancers as compared to traditional cell cultures. However, established 3D cell culturing protocols and techniques are time-consuming, manually laborious and often expensive due to the excessive consumption of reagents. Microfluidics allows for traditional laboratory-based biological experiments to be scaled down into miniature custom fabricated devices, where cost-effective experiments can be performed through the manipulation and flow of small volumes of fluid. In this study, we characterise a 3D cell culturing microfluidic device fabricated from a 3D printed master. HT29 cells were seeded into the device and 3D spheroids were generated and cultured through the perfusion of cell media. Spheroids were treated with 5-Fluorouracil for five days through continuous perfusion and cell viability was analysed on-chip at different time points using fluorescence microscopy and Lactate dehydrogenase (LDH) assay on the supernatant. Increasing cell death was observed in the HT29 spheroids over the five-day period. The 3D cell culturing microfluidic device described in this study, permits on-chip anti-cancer treatment and viability analysis, and forms the basis of an effective platform for the high-throughput screening of anti-cancer drugs in 3D tumour spheroids.
Collapse
|
14
|
Zurina IM, Presniakova VS, Butnaru DV, Svistunov AA, Timashev PS, Rochev YA. Tissue engineering using a combined cell sheet technology and scaffolding approach. Acta Biomater 2020; 113:63-83. [PMID: 32561471 DOI: 10.1016/j.actbio.2020.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Cell sheet technology has remained quite popular among tissue engineering techniques over the last several years. Meanwhile, there is an apparent trend in modern scientific research towards combining different approaches and strategies. Accordingly, a large body of work has arisen where cell sheets are used not as separate structures, but in combination with scaffolds as supporting constructions. The aim of this review is to analyze the intersection of these two vast areas of tissue engineering described in the literature mainly within the last five years. Some practical and technical details are emphasized to provide information that can be useful in research design and planning. The first part of the paper describes the general issues concerning the use of combined technology, its advantages and limitations in comparison with those of other tissue engineering approaches. Next, the detailed literature analysis of in vivo studies aimed at the regeneration of different tissues is performed. A significant part of this section concerns bone regeneration. In addition to that, other connective tissue structures, including articular cartilage and fibrocartilage, ligaments and tendons, and some soft tissues are discussed. STATEMENT OF SIGNIFICANCE: This paper describes the intersection of two technologies used in designing of tissue-engineered constructions for regenerative medicine: cell sheets as extracellular matrix-rich structures and supporting scaffolds as essentials in tissue engineering. A large number of reviews are devoted to each of these scientific problems. However, the solution of complex problems of tissue engineering requires an integrated approach that includes both three-dimensional scaffolds and cell sheets. This manuscript serves as a description of advantages and limitations of this method, its use in regeneration of bones, connective tissues and soft tissues and some other details.
Collapse
Affiliation(s)
- Irina M Zurina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St., Moscow, Russia; FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of Russia, 125993, 2/1-1 Barrikadnaya St., Moscow, Russia
| | - Viktoria S Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia
| | - Denis V Butnaru
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Andrey A Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; Institute of Photonic Technologies, Research Center "Crystallography and Photonics", Russian Academy of Sciences, 108840, 2 Pionerskaya st., Troitsk, Moscow, Russia; Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 119991 4 Kosygin st., Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1‑3, Moscow 119991, Russia.
| | - Yury A Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
15
|
Rho HS, Gardeniers H. Microfluidic Droplet-Storage Array. MICROMACHINES 2020; 11:mi11060608. [PMID: 32585943 PMCID: PMC7344826 DOI: 10.3390/mi11060608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023]
Abstract
A microfluidic droplet-storage array that is capable of the continuous operation of droplet formation, storing, repositioning, retrieving, injecting and restoring is demonstrated. The microfluidic chip comprised four valve-assisted droplet generators and a 3 × 16 droplet-storage array. The integrated pneumatically actuated microvalves enable the precise control of aqueous phase dispensing, as well as carrier fluid flow path and direction for flexible manipulating water-in-oil droplets in the chip. The size of droplets formed by the valve-assisted droplet generators was validated under various operating conditions such as pressures for introducing solutions and dispensing time. In addition, flexible droplet addressing in the storage array was demonstrated by storing droplets with various numbers and compositions in different storage units as well as rearranging their stored positions. Moreover, serial injections of new droplets into a retrieved droplet from a storage unit was performed to show the potential of the platform in sequential dosing on incubated droplet-based reactors at the desired timeline. The droplet-storage array with great freedom and flexibility in droplet handling could be applied for performing complex chemical and biologic reactions, especially in which incubation and dosing steps are necessary.
Collapse
Affiliation(s)
- Hoon Suk Rho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Mesoscale Chemical Systems Group, MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems Group, MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
- Correspondence: ; Tel.: +31-(0)53-489-4356
| |
Collapse
|
16
|
Arandian A, Bagheri Z, Ehtesabi H, Najafi Nobar S, Aminoroaya N, Samimi A, Latifi H. Optical Imaging Approaches to Monitor Static and Dynamic Cell-on-Chip Platforms: A Tutorial Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900737. [PMID: 31087503 DOI: 10.1002/smll.201900737] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Miniaturized laboratories on chip platforms play an important role in handling life sciences studies. The platforms may contain static or dynamic biological cells. Examples are a fixed medium of an organ-on-a-chip and individual cells moving in a microfluidic channel, respectively. Due to feasibility of control or investigation and ethical implications of live targets, both static and dynamic cell-on-chip platforms promise various applications in biology. To extract necessary information from the experiments, the demand for direct monitoring is rapidly increasing. Among different microscopy methods, optical imaging is a straightforward choice. Considering light interaction with biological agents, imaging signals may be generated as a result of scattering or emission effects from a sample. Thus, optical imaging techniques could be categorized into scattering-based and emission-based techniques. In this review, various optical imaging approaches used in monitoring static and dynamic platforms are introduced along with their optical systems, advantages, challenges, and applications. This review may help biologists to find a suitable imaging technique for different cell-on-chip studies and might also be useful for the people who are going to develop optical imaging systems in life sciences studies.
Collapse
Affiliation(s)
- Alireza Arandian
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Hamide Ehtesabi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Shima Najafi Nobar
- Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 1969764499, Iran
| | - Neda Aminoroaya
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Ashkan Samimi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
- Department of Physics, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
17
|
Khot MI, Levenstein M, Kapur N, Jayne D. A Review on the Recent Advancement in “Tumour Spheroids-on-a-Chip”. JOURNAL OF CANCER RESEARCH AND PRACTICE 2019. [DOI: 10.4103/jcrp.jcrp_23_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
De Simone U, Roccio M, Gribaldo L, Spinillo A, Caloni F, Coccini T. Human 3D Cultures as Models for Evaluating Magnetic Nanoparticle CNS Cytotoxicity after Short- and Repeated Long-Term Exposure. Int J Mol Sci 2018; 19:ijms19071993. [PMID: 29986546 PMCID: PMC6073335 DOI: 10.3390/ijms19071993] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 11/20/2022] Open
Abstract
Since nanoparticles (NPs) can translocate to the brain and impact the highly vulnerable central nervous system (CNS), novel in vitro tools for the assessment of NP-induced neurotoxicity are advocated. In this study, two types of CNS spheroids have been developed from human D384 astrocyte- and SH-SY5Y neuronal-like cells, and optimized in combination with standard assays (viability readout and cell morphology) to test neurotoxic effects caused by Fe3O4NPs, as NP-model, after short- (24–48 h; 1–100µg/ml) and long-term repeated exposure (30days; 0.1–25µg/ml). Short-term exposure of 3D-spheroids to Fe3O4NP induced cytotoxicity at 10 µg/mL in astrocytes and 25 µg/mL neurons. After long-term repeated dose regimen, spheroids showed concentration- and time-dependent cell mortality at 10 µg/mL for D384 and 0.5 µg/mL for SH-SY5Y, indicating a higher susceptibility of neurons than astrocytes. Both spheroid types displayed cell disaggregation after the first week of treatment at ≥0.1 µg/mL and becoming considerably evident at higher concentrations and over time. Recreating the 3D-spatial environment of the CNS allows cells to behave in vitro more closely to the in vivo situations, therefore providing a model that can be used as a stand-alone test or as a part of integrated testing strategies. These models could drive an improvement in the species-relevant predictivity of toxicity testing.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-BC, IRCCS Pavia, 27100 Pavia, Italy.
| | - Marianna Roccio
- Department of Obstetrics and Gynecology, IRCCS Foundation Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy.
| | - Laura Gribaldo
- European Commission, Directorate General Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Chemicals Safety and Alternative Methods Unit, 21027 Ispra, Italy.
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, IRCCS Foundation Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy.
| | - Francesca Caloni
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria (DIMEVET), 20133 Milano, Italy.
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-BC, IRCCS Pavia, 27100 Pavia, Italy.
| |
Collapse
|
19
|
|
20
|
Curto VF, Ferro MP, Mariani F, Scavetta E, Owens RM. A planar impedance sensor for 3D spheroids. LAB ON A CHIP 2018; 18:933-943. [PMID: 29459934 DOI: 10.1039/c8lc00067k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three dimensional cell culture systems have witnessed rapid expansion in the fields of tissue engineering and drug testing owing to their inherent ability to mimic native tissue microenvironments. High throughput technologies have also facilitated rapid and reproducible generation of spheroids and subsequently their use as in vitro tissue models in drug screening platforms. However, drug screening technologies are in need of monitoring platforms to study these 3D culture models. In this work we present a novel platform to measure the electrical impedance of 3D spheroids, through the use of a planar organic electrochemical transistor (OECT) and a novel circular-shaped microtrap. A new strategy was generated to overcome incompatibility of the integration of polydimethylsiloxane (PDMS) microdevices with OECT fabrication. The impedance platform for 3D spheroids was tested by using spheroids formed from mono-cultures of fibroblast and epithelial cells, as well as co-culture of the two cell types. We validated the platform by showing its ability to measure the spheroid resistance (Rsph) of the 3D spheroids and differences in Rsph were found to be related to the ion permeability of the spheroid. Additionally, we showed the potential use of the platform for the on-line Rsph monitoring when a co-culture spheroid was exposed to a porogenic agent affecting the integrity of the cell membrane.
Collapse
Affiliation(s)
- V F Curto
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| | | | | | | | | |
Collapse
|
21
|
Zhang L, Liu Z, Pang Y, Wang X, Li M, Ren Y. Trapping a moving droplet train by bubble guidance in microfluidic networks. RSC Adv 2018; 8:8787-8794. [PMID: 35539830 PMCID: PMC9078607 DOI: 10.1039/c7ra13507f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
Trapping a train of moving droplets into preset positions within a microfluidic device facilitates the long-term observation of biochemical reactions inside the droplets. In this paper, a new bubble-guided trapping method, which can remarkably improve the limited narrow two-phase flow rate range of uniform trapping, was proposed by taking advantage of the unique physical property that bubbles do not coalescence with two-phase fluids and the hydrodynamic characteristic of large flow resistance of bubbles. The flow behaviors of bubble-free and bubble-guided droplet trains were compared and analyzed under the same two-phase flow rates. The experimental results show that the droplets trapped by bubble-free guided trapping exhibit the four trapping modes of sequentially uniform trapping, non-uniform trapping induced by break-up and collision, and failed trapping due to squeezing through, and the droplets exhibit the desired uniform trapping in a relatively small two-phase flow rate range. Compared with bubble-free guided droplets, bubble-guided droplets also show four trapping modes. However, the two-phase flow rate range in which uniform trapping occurs is increased significantly and the uniformity of the trapped droplet array is improved. This investigation is beneficial to enhance the applicability of microfluidic chips for storing droplets in a passive way.
Collapse
Affiliation(s)
- Longxiang Zhang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Yan Pang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Xiang Wang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Mengqi Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Yanlin Ren
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
22
|
Du X, Li W, Du G, Cho H, Yu M, Fang Q, Lee LP, Fang J. Droplet Array-Based 3D Coculture System for High-Throughput Tumor Angiogenesis Assay. Anal Chem 2018; 90:3253-3261. [DOI: 10.1021/acs.analchem.7b04772] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaohui Du
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wanming Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Guansheng Du
- Institute of Microanalytical System, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hansang Cho
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Min Yu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Qun Fang
- Institute of Microanalytical System, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Luke P. Lee
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
23
|
Lim W, Hoang HH, You D, Han J, Lee JE, Kim S, Park S. Formation of size-controllable tumour spheroids using a microfluidic pillar array (μFPA) device. Analyst 2018; 143:5841-5848. [DOI: 10.1039/c8an01752b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe a method to generate several hundreds of spheroids using a microfluidic device with pillars.
Collapse
Affiliation(s)
- Wanyoung Lim
- Department of Biomedical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Hong-Hoa Hoang
- School of Mechanical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Daeun You
- Department of Health Sciences and Technology
- SAIHST
- Sungkyunkwan University
- Korea
| | - Jeonghun Han
- School of Mechanical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology
- SAIHST
- Sungkyunkwan University
- Korea
- Department of Breast Surgery
| | - Sangmin Kim
- Department of Breast Surgery
- Samsung Medical Center
- Seoul
- Korea
| | - Sungsu Park
- Department of Biomedical Engineering
- Sungkyunkwan University
- Suwon
- Korea
- School of Mechanical Engineering
| |
Collapse
|
24
|
A Microfluidic Platform for the Characterisation of CNS Active Compounds. Sci Rep 2017; 7:15692. [PMID: 29146949 PMCID: PMC5691080 DOI: 10.1038/s41598-017-15950-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/03/2017] [Indexed: 01/19/2023] Open
Abstract
New in vitro technologies that assess neuronal excitability and the derived synaptic activity within a controlled microenvironment would be beneficial for the characterisation of compounds proposed to affect central nervous system (CNS) function. Here, a microfluidic system with computer controlled compound perfusion is presented that offers a novel methodology for the pharmacological profiling of CNS acting compounds based on calcium imaging readouts. Using this system, multiple applications of the excitatory amino acid glutamate (10 nM–1 mM) elicited reproducible and reversible transient increases in intracellular calcium, allowing the generation of a concentration response curve. In addition, the system allows pharmacological investigations to be performed as evidenced by application of glutamatergic receptor antagonists, reversibly inhibiting glutamate-induced increases in intracellular calcium. Importantly, repeated glutamate applications elicited significant increases in the synaptically driven activation of the adjacent, environmentally isolated neuronal network. Therefore, the proposed new methodology will enable neuropharmacological analysis of CNS active compounds whilst simultaneously determining their effect on synaptic connectivity.
Collapse
|
25
|
Au Ieong KI, Yang C, Wong CT, Shui AC, Wu TTY, Chen TH, Lam RHW. Investigation of Drug Cocktail Effects on Cancer Cell-Spheroids Using a Microfluidic Drug-Screening Assay. MICROMACHINES 2017. [PMCID: PMC6189953 DOI: 10.3390/mi8060167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Development of drugs based on potential anti-cancer chemotherapeutic agents has been hindered by its necessary tedious procedures and failure in the clinical trials because of unbearable toxicity and extremely low clinical efficacy. One of the technical challenges is the mismatch between laboratory settings and human body environments for the cancer cells responding upon treatments of the anti-cancer agents. This major limitation urges for applying more reliable platforms for evaluating drugs with a higher throughput and cell aggregates in a more natural configuration. Here, we adopt a microfluidic device integrated with a differential micromixer and multiple microwell-containing channels (50 microwells per channel) for parallel screening of suspending cell spheroids treated by drugs with different combinations. We optimize the culture conditions of the surfactant-coated microwells in order to facilitate the spheroid formation of the breast cancer cell line (MDA-MB-231). We propose a new drug cocktail combined with three known chemotherapeutic agents (paclitaxel, epirubicin, and aspirin) for the drug screening of the cancer cell-spheroids. Our results exhibit the differential responses between planar cell layers in traditional culture wells and cell-spheroids grown in our microfluidic device, in terms of the apoptotic rates under treatments of the drug cocktails with different concentrations. These results reveal a distinct drug resistance between planar cell layers and cell-spheroids. Together, this work offers important guidelines on applying the cell-spheroid microfluidic cultures for development of more efficacious anticancer drugs.
Collapse
Affiliation(s)
- Ka I. Au Ieong
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (K.I.A.I.); (C.Y.); (C.T.W.); (A.C.S.); (T.T.Y.W.); (T.-H.C.)
| | - Chengpeng Yang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (K.I.A.I.); (C.Y.); (C.T.W.); (A.C.S.); (T.T.Y.W.); (T.-H.C.)
| | - Chin To Wong
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (K.I.A.I.); (C.Y.); (C.T.W.); (A.C.S.); (T.T.Y.W.); (T.-H.C.)
| | - Angelie C. Shui
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (K.I.A.I.); (C.Y.); (C.T.W.); (A.C.S.); (T.T.Y.W.); (T.-H.C.)
| | - Tom T. Y. Wu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (K.I.A.I.); (C.Y.); (C.T.W.); (A.C.S.); (T.T.Y.W.); (T.-H.C.)
| | - Ting-Hsuan Chen
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (K.I.A.I.); (C.Y.); (C.T.W.); (A.C.S.); (T.T.Y.W.); (T.-H.C.)
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Raymond H. W. Lam
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (K.I.A.I.); (C.Y.); (C.T.W.); (A.C.S.); (T.T.Y.W.); (T.-H.C.)
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-3442-8577
| |
Collapse
|
26
|
Abstract
A three-dimensional (3D) tissue model has significant advantages over the conventional two-dimensional (2D) model. A 3D model mimics the relevant in-vivo physiological conditions, allowing a cell culture to serve as an effective tool for drug discovery, tissue engineering, and the investigation of disease pathology. The present reviews highlight the recent advances and the development of microfluidics based methods for the generation of cell spheroids. The paper emphasizes on the application of microfluidic technology for tissue engineering including the formation of multicellular spheroids (MCS). Further, the paper discusses the recent technical advances in the integration of microfluidic devices for MCS-based high-throughput drug screening. The review compares the various microfluidic techniques and finally provides a perspective for the future opportunities in this research area.
Collapse
|