1
|
Xiao H, Feng J, Peng J, Wu P, Chang Y, Li X, Wu J, Huang H, Deng H, Qiu M, Yang Y, Du B. Fuc-S-A New Ultrasonic Degraded Sulfated α-l-Fucooligosaccharide-Alleviates DSS-Inflicted Colitis through Reshaping Gut Microbiota and Modulating Host-Microbe Tryptophan Metabolism. Mar Drugs 2022; 21:md21010016. [PMID: 36662189 PMCID: PMC9863236 DOI: 10.3390/md21010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
SCOPE The dysbiosis of intestinal microecology plays an important pathogenic role in the development of inflammatory bowel disease. METHODS AND RESULTS A polysaccharide named Fuc-S, with a molecular weight of 156 kDa, was prepared by the ultrasonic degradation of fucoidan. Monosaccharide composition, FTIR, methylation, and NMR spectral analysis indicated that Fuc-S may have a backbone consisting of →3)-α-L-Fucp-(1→, →4)-α-L-Fucp-(1→ and →3, 4)-α-D-Glcp-(1→. Moreover, male C57BL/6 mice were fed three cycles of 1.8% dextran sulfate sodium (DSS) for 5 days and then water for 7 days to induce colitis. The longitudinal microbiome alterations were evaluated using 16S amplicon sequencing. In vivo assays showed that Fuc-S significantly improved clinical manifestations, colon shortening, colon injury, and colonic inflammatory cell infiltration associated with DSS-induced chronic colitis in mice. Further studies revealed that these beneficial effects were associated with the inhibition of Akt, p-38, ERK, and JNK phosphorylation in the colon tissues, regulating the structure and abundance of the gut microbiota, and modulating the host-microbe tryptophan metabolism of the mice with chronic colitis. CONCLUSION Our data confirmed the presence of glucose in the backbone of fucoidan and provided useful information that Fuc-S can be applied as an effective functional food and pharmaceutical candidate for IBD treatment.
Collapse
Affiliation(s)
- Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jinxiu Feng
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peigen Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Yaoyao Chang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xianqian Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jinhui Wu
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Haifeng Huang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Huan Deng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Miao Qiu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yuedong Yang
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Correspondence: (Y.Y.); (B.D.); Tel.: +86-335-8077682 (B.D.)
| | - Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Correspondence: (Y.Y.); (B.D.); Tel.: +86-335-8077682 (B.D.)
| |
Collapse
|
2
|
Thabet NM, Abdel-Rafei MK, El-Sayyad GS, Elkodous MA, Shaaban A, Du YC, Rashed LA, Askar MA. Multifunctional nanocomposites DDMplusAF inhibit the proliferation and enhance the radiotherapy of breast cancer cells via modulating tumor-promoting factors and metabolic reprogramming. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tumor-promoting factors (TPF) and metabolic reprogramming are hallmarks of cancer cell growth. This study is designed to combine the newly synthesized two nanocomposites DDM (HA-FA-2DG@DCA@MgO) and AF (HA-FA-Amygdaline@Fe2O3) with fractionated doses of radiotherapy (6 Gy-FDR; fractionated dose radiotherapy) to improve the efficiency of chemo-radiotherapy against breast cancer cell lines (BCCs; MCF-7 and MDA-MB-231). The physicochemical properties of each nanocomposite were confirmed using energy dispersive XRD, FTIR, HR-TEM, and SEM. The stability of DDMPlusAF was also examined, as well as its release and selective cellular uptake in response to acidic pH. A multiple-MTT assay was performed to evaluate the radiosensitivity of BCCs to DDMPlusAF at 3 Gy (single dose radiotherapy; SDR) and 6 Gy-FDR after 24, 48, and 72 h. Finally, the anti-cancer activity of DDMPlusAF with 6 Gy-FDR was investigated via assessing the cell cycle distribution and cell apoptosis by flow cytometry, the biochemical mediators (HIF-1α, TNF-α, IL-10, P53, PPAR-α, and PRMT-1), along with glycolytic pathway (glucose, HK, PDH, lactate, and ATP) as well as the signaling effectors (protein expression of AKT, AMPK, SIRT-1, TGF-β, PGC-1α, and gene expression of ERR-α) were determined in this study.
Results
The stability of DDMPlusAF was verified over 6 days without nanoparticle aggregation. DDMPlusAF release and selectivity data revealed that their release was amenable to the acidic pH of the cancer environment, and their selectivity was enhanced towards BCCs owing to CD44 and FR-α receptors-mediated uptake. After 24 h, DDMPlusAF boosted the BCC radiosensitivity to 6 Gy-FDR. Cell cycle arrest (G2/M and pre-G1), apoptosis induction, modulation of TPF mediators and signaling effectors, and suppression of aerobic glycolysis, all confirmed DDMPlusAF + 6 Gy’s anti-cancer activity.
Conclusions
It could be concluded that DDMPlusAF exerted a selective cancer radiosensitizing efficacy with targeted properties for TPF and metabolic reprogramming in BCCs therapy.
Collapse
|
3
|
Liang TL, Li RZ, Mai CT, Guan XX, Li JX, Wang XR, Ma LR, Zhang FY, Wang J, He F, Pan HD, Zhou H, Yan PY, Fan XX, Wu QB, Neher E, Liu L, Xie Y, Leung ELH, Yao XJ. A method establishment and comparison of in vivo lung cancer model development platforms for evaluation of tumour metabolism and pharmaceutical efficacy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153831. [PMID: 34794861 DOI: 10.1016/j.phymed.2021.153831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Currently, the identification of accurate biomarkers for the diagnosis of patients with early-stage lung cancer remains difficult. Fortunately, metabolomics technology can be used to improve the detection of plasma metabolic biomarkers for lung cancer. In a previous study, we successfully utilised machine learning methods to identify significant metabolic markers for early-stage lung cancer diagnosis. However, a related research platform for the investigation of tumour metabolism and drug efficacy is still lacking. HYPOTHESIS/PURPOSE A novel methodology for the comprehensive evaluation of the internal tumour-metabolic profile and drug evaluation needs to be established. METHODS The optimal location for tumour cell inoculation was identified in mouse chest for the non-traumatic orthotopic lung cancer mouse model. Microcomputed tomography (micro-CT) was applied to monitor lung tumour growth. Proscillaridin A (P.A) and cisplatin (CDDP) were utilised to verify the anti-lung cancer efficacy of the platform. The top five clinically valid biomarkers, including proline, L-kynurenine, spermidine, taurine and palmitoyl-L-carnitine, were selected as the evaluation indices to obtain a suitable lung cancer mouse model for clinical metabolomics research by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS The platform was successfully established, achieving 100% tumour development rate and 0% surgery mortality. P.A and CDDP had significant anti-lung cancer efficacy in the platform. Compared with the control group, four biomarkers in the orthotopic model and two biomarkers in the metastatic model had significantly higher abundance. Principal component analysis (PCA) showed a significant separation between the orthotopic/metastatic model and the control/subcutaneous/KRAS transgenic model. The platform was mainly involved in arginine and proline metabolism, tryptophan metabolism, and taurine and hypotaurine metabolism. CONCLUSION This study is the first to simulate clinical metabolomics by comparing the metabolic phenotype of plasma in different lung cancer mouse models. We found that the orthotopic model was the most suitable for tumour metabolism. Furthermore, the anti-tumour drug efficacy was verified in the platform. The platform can very well match the clinical reality, providing better lung cancer diagnosis and securing more precise evidence for drug evaluation in the future.
Collapse
Affiliation(s)
- Tu-Liang Liang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Run-Ze Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Chu-Tian Mai
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Xiao-Xiang Guan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Jia-Xin Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Xuan-Run Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Lin-Rui Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Fang-Yuan Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Jian Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Fan He
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Hu-Dan Pan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Hua Zhou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Pei-Yu Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Qi-Biao Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Ying Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China.
| | - Elaine Lai-Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China; Zhuhai Hospital of Traditional Chinese and Western Medicine, Zhuhai City, Guangdong, PR China.
| | - Xiao-Jun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China; State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Tang T, Zhang P, Li S, Xu D, Li W, Tian Y, Jiao Y, Zhang Z, Xu F. Absolute Quantification of Acylcarnitines Using Integrated Tmt-PP Derivatization-Based LC-MS/MS and Quantitative Analysis of Multi-Components by a Single Marker Strategy. Anal Chem 2021; 93:12973-12980. [PMID: 34529423 DOI: 10.1021/acs.analchem.1c02606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acylcarnitines (ACs) play important roles in the fatty acid β-oxidation and are considered as diagnostic markers for many diseases. Accurate determination of ACs remains challenging due to their low abundance, high structure diversity, and limited availability of standard compounds. In this study, microwave-assisted Tmt-PP (p-[3,5-(dimethylamino)-2,4,6-triazine] benzene-1-sulfonyl piperazine) derivatization was utilized to facilitate the liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) determination of ACs. The result indicated that Tmt-PP labeling enables the prediction of the retention time and MS response of ACs and enhances their MS response up to 4 times. The introduction of the microwave during the derivatization procedure greatly improved the reaction efficiency, demonstrated by the shortened reaction time from 90 to 1 min. Furthermore, we applied a strategy named quantitative analysis of multi-components by a single marker (QAMS) for the assay of 26 ACs with only 5 AC standards, solving the standard availability issue to a large extent. The established workflow was applied to discover dysregulated ACs in xenograft colon cancer mice, and the quantification results were highly comparable with traditional methods where there were the corresponding standards for each AC. Our study demonstrated that chemical derivatization-based LC-MS/MS integrated with the QAMS strategy is robust for the identification and quantification of ACs and has great potential in targeted metabolomics study.
Collapse
Affiliation(s)
- Tian Tang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Siqi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Doudou Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yu Jiao
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Chang Y, Zhai L, Peng J, Wu H, Bian Z, Xiao H. Phytochemicals as regulators of Th17/Treg balance in inflammatory bowel diseases. Biomed Pharmacother 2021; 141:111931. [PMID: 34328111 DOI: 10.1016/j.biopha.2021.111931] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 02/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disorder that is difficult to cure and characterized by periods of relapse. To face the challenges of limited treatment strategies and drawbacks of conventional medications, developing new and promising strategies as well as safe and effective drugs for treatment of IBD has become an urgent demand for clinics. The imbalance of Th17/Treg is a crucial event for the development of IBD, and studies have verified that correcting the imbalance of Th17/Treg is an effective strategy for preventing and treating IBD. Recently, a growing body of studies has indicated that phytochemicals derived from natural products are potent regulators of Th17/Treg, and exert preferable protective benefits against colonic inflammation. In this review, the great potential of anti-colitis agents derived from natural products through targeting Th17/Treg cells and their action mechanisms for the treatment or prevention of IBD in recent research is summarized, which may help further the development of new drugs for IBD treatment.
Collapse
Affiliation(s)
- Yaoyao Chang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Zhu T, Li S, Wang J, Liu C, Gao L, Zeng Y, Mao R, Cui B, Ji H, Chen Z. Induced sputum metabolomic profiles and oxidative stress are associated with chronic obstructive pulmonary disease (COPD) severity: potential use for predictive, preventive, and personalized medicine. EPMA J 2020; 11:645-659. [PMID: 33235638 PMCID: PMC7680486 DOI: 10.1007/s13167-020-00227-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly heterogeneous disease, and metabolomics plays a hub role in predictive, preventive, and personalized medicine (PPPM) related to COPD. This study thus aimed to reveal the role of induced sputum metabolomics in predicting COPD severity. In this pilot study, a total of 20 COPD patients were included. The induced sputum metabolites were assayed using a liquid chromatography-mass spectrometry (LC-MS/MS) system. Five oxidative stress products (myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione (GSH), neutrophil elastase (NE), and 8-iso-PGF2α) in induced sputum were measured by ELISA, and the metabolomic profiles were distinguished by principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA). The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway enrichment analysis, and a significant difference in induced sputum metabolomics was observed between moderate and severe COPD. The KEGG analysis revealed that the glycerophospholipid metabolism pathway was downregulated in severe COPD. Due to the critical role of glycerophospholipid metabolism in oxidative stress, significant negative correlations were discovered between glycerophospholipid metabolites and three oxidative stress products (SOD, MPO, and 8-iso-PGF2α). The diagnostic values of SOD, MPO, and 8-iso-PGF2α in induced sputum were found to exhibit high sensitivities and specificities in the prediction of COPD severity. Collectively, this study provides the first identification of the association between induced sputum metabolomic profiles and COPD severity, indicating the potential value of metabolomics in PPPM for COPD management. The study also reveals the correlation between glycerophospholipid metabolites and oxidative stress products and their value for predicting COPD severity. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-020-00227-w.
Collapse
Affiliation(s)
- Tao Zhu
- Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Shanqun Li
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| | - Jiajia Wang
- Rheumatology Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Chunfang Liu
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| | - Lei Gao
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| | - Yuzhen Zeng
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| | - Ruolin Mao
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| | - Bo Cui
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| | - Hong Ji
- California National Primate Research Center, and Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616 USA
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| |
Collapse
|
7
|
Translational Potential of Metabolomics on Animal Models of Inflammatory Bowel Disease-A Systematic Critical Review. Int J Mol Sci 2020; 21:ijms21113856. [PMID: 32485793 PMCID: PMC7312423 DOI: 10.3390/ijms21113856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022] Open
Abstract
In the development of inflammatory bowel disease (IBD), the gut microbiota has been established as a key factor. Recently, metabolomics has become important for understanding the functional relevance of gut microbial changes in disease. Animal models for IBD enable the study of factors involved in disease development. However, results from animal studies may not represent the human situation. The aim of this study was to investigate whether results from metabolomics studies on animal models for IBD were similar to those from studies on IBD patients. Medline and Embase were searched for relevant studies up to May 2017. The Covidence systematic review software was used for study screening, and quality assessment was conducted for all included studies. Data showed a convergence of ~17% for metabolites differentiated between IBD and controls in human and animal studies with amino acids being the most differentiated metabolite subclass. The acute dextran sodium sulfate model appeared as a good model for analysis of systemic metabolites in IBD, but analytical platform, age, and biological sample type did not show clear correlations with any significant metabolites. In conclusion, this systematic review highlights the variation in metabolomics results, and emphasizes the importance of expanding the applied detection methods to ensure greater coverage and convergence between the various different patient phenotypes and animal models of inflammatory bowel disease.
Collapse
|
8
|
Du HL, Zhai AD, Yu H. Synergistic effect of halofuginone and dexamethasone on LPS‑induced acute lung injury in type II alveolar epithelial cells and a rat model. Mol Med Rep 2019; 21:927-935. [PMID: 31974595 DOI: 10.3892/mmr.2019.10865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
Acute lung injury (ALI) is characterized by neutrophilic infiltration, uncontrolled oxidative stress and inflammatory processes. Despite various therapeutic regimes having been performed, there remains no effective pharmacotherapy available to treat ALI. Halofuginone (HF), a ketone isolated from Dichroa febrifuga, exhibits significant anti‑inflammatory and antifibrotic effects. Dexamethasone (DEX), a synthetic glucocorticoid, has been routinely used as an adjuvant therapy in treating inflammatory diseases, including ALI. The present study aimed to investigate the effects of the combination of HF and DEX in the treatment of ALI. The present results suggested that the simultaneous administration of HF and DEX markedly decreased the level of pro‑inflammatory cytokines and increased the level of anti‑inflammatory cytokines, as assessed by western blot analysis. In addition, HF and DEX effectively decreased nuclear factor‑κB activity via suppressing the phosphorylation of P65 in lipopolysaccharide (LPS)‑induced human pulmonary alveolar epithelial cells (HPAEpiC) and lung tissues extracted from ALI rats, as determined by immunofluorescence. Furthermore, in vivo experiments demonstrated that the combination of HF and DEX in LPS‑induced ALI rats defended against lung fibrosis, perivascular inflammation, congestion and edema of pulmonary alveoli, as assessed by histopathological analysis, TUNEL staining and immunohistochemistry assay. Taken together, the present study indicated the synergistic effect of HF and DEX on LPS‑induced ALI in HPAEpiC cells and a rat model. These results offer a novel therapeutic approach for the treatment of ALI.
Collapse
Affiliation(s)
- Hai-Lian Du
- Department of Respiratory Medicine, Yidu Central Hospital Affiliated to Weifang Medical College, Qingzhou, Shandong 262500, P.R. China
| | - Ai-Dong Zhai
- Department of Internal Medicine, Maternal and Child Health Hospital of Zibo, Zibo, Shandong 255029, P.R. China
| | - Hong Yu
- Intensive Care Unit, Second Hospital of Harbin City, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
9
|
Zaimenko I, Jaeger C, Brenner H, Chang-Claude J, Hoffmeister M, Grötzinger C, Detjen K, Burock S, Schmitt CA, Stein U, Lisec J. Non-invasive metastasis prognosis from plasma metabolites in stage II colorectal cancer patients: The DACHS study. Int J Cancer 2019; 145:221-231. [PMID: 30560999 DOI: 10.1002/ijc.32076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
Metastasis is the main cause of death from colorectal cancer (CRC). About 20% of stage II CRC patients develop metastasis during the course of disease. We performed metabolic profiling of plasma samples from non-metastasized and metachronously metastasized stage II CRC patients to assess the potential of plasma metabolites to serve as biomarkers for stratification of stage II CRC patients according to metastasis risk. We compared the metabolic profiles of plasma samples prospectively obtained prior to metastasis formation from non-metastasized vs. metachronously metastasized stage II CRC patients of the German population-based case-control multicenter DACHS study retrospectively. Plasma samples were analyzed from stage II CRC patients for whom follow-up data including the information on metachronous metastasis were available. To identify metabolites distinguishing non-metastasized from metachronously metastasized stage II CRC patients robust supervised classifications using decision trees and support vector machines were performed and verified by 10-fold cross-validation, by nested cross-validation and by traditional validation using training and test sets. We found that metabolic profiles distinguish non-metastasized from metachronously metastasized stage II CRC patients. Classification models from decision trees and support vector machines with 10-fold cross-validation gave average accuracy of 0.75 (sensitivity 0.79, specificity 0.7) and 0.82 (sensitivity 0.85, specificity 0.77), respectively, correctly predicting metachronous metastasis in stage II CRC patients. Taken together, plasma metabolic profiles distinguished non-metastasized and metachronously metastasized stage II CRC patients. The classification models consisting of few metabolites stratify non-invasively stage II CRC patients according to their risk for metachronous metastasis.
Collapse
Affiliation(s)
- Inna Zaimenko
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Carsten Jaeger
- Berlin Institute of Health, Berlin, Germany.,Medical Department, Division of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Molekulares Krebsforschungszentrum (MKFZ), Berlin, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Grötzinger
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Detjen
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susen Burock
- Charité Comprehensive Cancer Center, Berlin, Germany
| | - Clemens A Schmitt
- Medical Department, Division of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Molekulares Krebsforschungszentrum (MKFZ), Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Lisec
- Medical Department, Division of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Molekulares Krebsforschungszentrum (MKFZ), Berlin, Germany.,Division of Analytical Chemistry, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
10
|
Magnolol, a Natural Polyphenol, Attenuates Dextran Sulfate Sodium-Induced Colitis in Mice. Molecules 2017; 22:molecules22071218. [PMID: 28726741 PMCID: PMC6152296 DOI: 10.3390/molecules22071218] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
Magnolol is a lignan with anti-inflammatory activity identified in Magnolia officinalis. Ulcerative colitis (UC), one of the types of inflammatory bowel disease (IBD), is a disease that causes inflammation and ulcers in the colon. To investigate the effect of magnolol in dextran sulfate sodium (DSS)-induced experimental UC model, male C57 mice were treated with 2% DSS drinking water for 5 consecutive days followed by intragastric administration with magnolol (5, 10 and 15 mg/kg) daily for 7 days. The results showed that magnolol significantly attenuated disease activity index, inhibited colonic shortening, reduced colonic lesions and suppressed myeloperoxidase (MPO) activity. Moreover, colonic pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) induced by colitis were dramatically decreased by magnolol. To further unveil the metabolic signatures upon magnolol treatment, mass spectrometry-based metabolomic analysis of the small molecular metabolites in mice serum were performed. Compared with controls, abnormality of serum metabolic phenotypes in DSS-treated mice were effectively reversed by different doses of magnolol. In particular, magnolol treatment effectively elevated the serum levels of tryptophan metabolites including kynurenic acid (KA), 5-hydroxyindoleacetic acid, indoleacetic acid (IAA), indolelactic acid and indoxylsulfuric acid, which are potential aryl hydrocarbon receptor (AHR) ligands to impact colitis. These findings suggest that magnolol exerts anti-inflammatory effect on DSS-induced colitis and its underlying mechanisms are associated with the restoring of tryptophan metabolites that inhibit the colonic inflammation.
Collapse
|