1
|
Appiah-Kubi P, Iwuchukwu EA, Soliman MES. Structure-based identification of novel scaffolds as potential HIV-1 entry inhibitors involving CCR5. J Biomol Struct Dyn 2022; 40:13115-13126. [PMID: 34569417 DOI: 10.1080/07391102.2021.1982006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
C-C chemokine receptor 5 (CCR5), which is part of the chemokine receptor family, is a member of the G protein-coupled receptor superfamily. The interactions of CCR5 with HIV-1 during viral entry position it as an effective therapeutic target for designing potent antiviral therapies. The small-molecule Maraviroc was approved by the FDA as a CCR5 drug in 2007, while clinical trials failure has characterised many of the other CCR5 inhibitors. Thus, the continual identification of potential CCR5 inhibitors is, therefore, warranted. In this study, a structure-based discovery approach has been utilised to screen and retrieved novel potential CCR5 inhibitors from the Asinex antiviral compound (∼ 8,722) database. Explicit lipid-bilayer molecular dynamics simulation, in silico physicochemical and pharmacokinetic analyses, were further performed for the top compounds. A total of 23 structurally diverse compounds with binding scores higher than Maraviroc were selected. Subsequent molecular dynamics (MD) simulations analysis of the top four compounds LAS 51495192, BDB 26405401, BDB 26419079, and LAS 34154543, maintained stability at the CCR5 binding site. Furthermore, these compounds made pertinent interactions with CCR5 residues critical for the HIV-1 gp120-V3 loop binding such as Trp86, Tyr89, Phe109, Tyr108, Glu283 and Tyr251. Additionally, the predicted in silico physicochemical and pharmacokinetic descriptors of the selected compounds were within the acceptable range for drug-likeness. The results suggest positive indications that the identified molecules may represent promising CCR5 entry inhibitors. Further structural optimisations and biochemical testing of the proposed compounds may assist in the discovery of effective HIV-1 therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patrick Appiah-Kubi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Emmanuel Amarachi Iwuchukwu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Mind the Gap—Deciphering GPCR Pharmacology Using 3D Pharmacophores and Artificial Intelligence. Pharmaceuticals (Basel) 2022; 15:ph15111304. [DOI: 10.3390/ph15111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are amongst the most pharmaceutically relevant and well-studied protein targets, yet unanswered questions in the field leave significant gaps in our understanding of their nuanced structure and function. Three-dimensional pharmacophore models are powerful computational tools in in silico drug discovery, presenting myriad opportunities for the integration of GPCR structural biology and cheminformatics. This review highlights success stories in the application of 3D pharmacophore modeling to de novo drug design, the discovery of biased and allosteric ligands, scaffold hopping, QSAR analysis, hit-to-lead optimization, GPCR de-orphanization, mechanistic understanding of GPCR pharmacology and the elucidation of ligand–receptor interactions. Furthermore, advances in the incorporation of dynamics and machine learning are highlighted. The review will analyze challenges in the field of GPCR drug discovery, detailing how 3D pharmacophore modeling can be used to address them. Finally, we will present opportunities afforded by 3D pharmacophore modeling in the advancement of our understanding and targeting of GPCRs.
Collapse
|
3
|
Zhang X, He H, Xiang J, Hou T. Screening and bioavailability evaluation of anti-oxidative selenium-containing peptides from soybeans based on specific structures. Food Funct 2022; 13:5252-5261. [PMID: 35438695 DOI: 10.1039/d2fo00113f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our previous study has evaluated the antioxidant capacity and identified the sequences of soybean selenium-containing peptides. Herein, pharmacophore screening, gastrointestinal simulation and in vivo pharmacokinetics were performed to predict the potentials of selenium-containing peptides in terms of antioxidant activity, safety and bioavailability. A pharmacophore model with 6 structure features was constructed for virtual screening to determine the potential activities of 85 selenium sequences from soybean peptides. Strong reversing effects (p < 0.05) of the targeted sequences were observed in tumor necrosis factor-α (TNF-α)-induced inflammatory cytokines and adhesion factors burst in EA·hy926/Caco-2 co-culture cell models. Ser-Phe-Gln-SeMet (SFQSeM), a promising peptide selected from both virtual screening and cell models, was proved to be stable in the gastrointestinal tract and could be transported across the Caco-2 monolayer via the paracellular pathway. Additionally, SFQSeM showed a long residence time (89.42 ± 1.34 min) and half-life (81.60 ± 11.88 min) after consumption, and it induced lower liver alanine/aspartate transaminase (ALT/AST) and serum nitric oxide (NO) levels compared to Na2SeO3 and SeMet (p < 0.05). The potency of SFQSeM against oxidative stress as well as its oral bioavailability and low risk highlight its potential utility as an effective Se nutritional supplement.
Collapse
Affiliation(s)
- Xing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiqian Xiang
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, China
| |
Collapse
|
4
|
Zhang Y, Chen HF. Allosteric mechanism of an oximino-piperidino-piperidine antagonist for the CCR5 chemokine receptor. Chem Biol Drug Des 2019; 95:113-123. [PMID: 31571405 DOI: 10.1111/cbdd.13627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 11/30/2022]
Abstract
The first step for the HIV-1 virus infecting host cell is bound with the CCR5 chemokine receptor. A set of allosteric inhibitors of oximino-piperidino-piperidine antagonists for CCR5 chemokine receptor was discovered. However, the allosteric mechanism of these inhibitors is still unsolved. Therefore, residue-level dynamics correlation network combining with on molecular dynamics simulation was used to investigate the allosteric mechanism. The dynamics correlation network of bound CCR5 is significantly different from that of free CCR5. The community of the most active complex suggests that the allosteric information can freely transfer from the allosteric site to the effector site of the second extracellular loop, while the information transfers bottleneck for the less active one. Here, a hypothesis was proposed that "binding-induced allosteric mechanism" was used to reveal the allosteric regulation of antagonists and the network perturbation confirmed it. Finally, the shortest path algorithm was used to identify the possible allosteric pathway with Gly173-Lys171-Thr177-Tyr89-LIG which was evaluated by the network perturbation of key residue. Furthermore, the efficiency of allostery for the most active system is the highest among these antagonist complexes. The strategy targeting the allosteric pathway can be used to design novel inhibitors of HIV-1 virus.
Collapse
Affiliation(s)
- Yangpeng Zhang
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| |
Collapse
|
5
|
Liu WS, Wang RR, Li WY, Rong M, Liu CL, Ma Y, Wang RL. Investigating the reason for loss-of-function of Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) caused by Y279C mutation through molecular dynamics simulation. J Biomol Struct Dyn 2019; 38:2509-2520. [DOI: 10.1080/07391102.2019.1634641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wen-Shan Liu
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Rui-Rui Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Wei-Ya Li
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Mei Rong
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Chi-Lu Liu
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Ying Ma
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Wang RR, Liu WS, Zhou L, Ma Y, Wang RL. Probing the acting mode and advantages of RMC-4550 as an Src-homology 2 domain-containing protein tyrosine phosphatase (SHP2) inhibitor at molecular level through molecular docking and molecular dynamics. J Biomol Struct Dyn 2019; 38:1525-1538. [DOI: 10.1080/07391102.2019.1613266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wen-Shan Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Liang Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Zhang F, Yuan Y, Xiang M, Guo Y, Li M, Liu Y, Pu X. Molecular Mechanism Regarding Allosteric Modulation of Ligand Binding and the Impact of Mutations on Dimerization for CCR5 Homodimer. J Chem Inf Model 2019; 59:1965-1976. [DOI: 10.1021/acs.jcim.8b00850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Fuhui Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu 610041, People’s Republic of China
| | - Minghui Xiang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yijing Liu
- College of Computer Science, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| |
Collapse
|
8
|
Lin HY, Ho Y, Liu HL. Structure-Based Pharmacophore Modeling to Discover Novel CCR5 Inhibitors for HIV-1/Cancers Therapy. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/jbise.2019.121002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Simagina AA, Polynski MV, Vinogradov AV, Pidko EA. Towards rational design of metal-organic framework-based drug delivery systems. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4797] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Ghadari R, Mohammadzadeh Y. A Computational Study on the Blocking Ability of Selected Commercially Available Anticancer Drugs and Their Hypothetic Derivatives on the CCR5. Assay Drug Dev Technol 2018; 16:266-277. [DOI: 10.1089/adt.2017.836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rahim Ghadari
- Computational Chemistry Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Yousef Mohammadzadeh
- Computational Chemistry Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
11
|
Zhang F, Yuan Y, Li H, Shen L, Guo Y, Wen Z, Pu X. Using accelerated molecular dynamics simulation to shed light on the mechanism of activation/deactivation upon mutations for CCR5. RSC Adv 2018; 8:37855-37865. [PMID: 35558583 PMCID: PMC9089863 DOI: 10.1039/c8ra07686c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022] Open
Abstract
In this work, accelerated molecular dynamics (aMD) simulations were used to study different effects of G286F and R126 mutations on the activity of CCR5. Potential of Mean Force (PMF) results indicate that there are stable inactive-like states and active-like ones existing in the conformation space of the wild type (WT), confirming that CCR5 could possess to some extent constitutive activity. But the R126N mutation could constrain CCR5 in the inactive state through influencing the TXP motif and limiting the movements of TM5 and TM6. In contrast, the G286F mutation promotes the activity of the receptor by increasing the distance of TM2–TM6 and the flexibility of the intracellular part of TM5 and changing the H-bonding in the TXP motif. The observations from the cross correlation analysis further show that the R126N mutation dramatically reduces the motion correlations between TMs, which should partly contribute to the deactivation of CCR5. Compared with the WT system, TM6 and TM7 in the G286F mutant are loosely correlated with other regions, which should be conducive to drive the movement of TM6 and TM7 toward the active conformation. In addition, the result from the protein structure network (PSN) analysis reveals that the shortest pathways connecting the extracellular and the intracellular domains are highly conserved in the three systems despite the different mutations, in which the hydrogen bond plays a pivotal role. However, the G286F mutation shortens the lifetime of the pathway with respect to the R126N mutation, which may be associated with the different activities of the two mutants. The pathway connecting the ligand-binding site and the G-protein region reveals that the allosteric communication between TM6 and TM7 is enhanced by the R126N mutation while the G286F mutation induces the activation of the G-protein pocket by arousing more residues in the NPxxY region to participate in the pathway. In this work, accelerated molecular dynamics (aMD) simulations were used to study different effects of G286F and R126 mutations on the activity of CCR5.![]()
Collapse
Affiliation(s)
- Fuhui Zhang
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yuan Yuan
- College of Management
- Southwest University for Nationalities
- Chengdu 610041
- P. R. China
| | - Haiyan Li
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Liting Shen
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yanzhi Guo
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Zhining Wen
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Xuemei Pu
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| |
Collapse
|