1
|
Hussein MMA, Abdelfattah-Hassan A, Eldoumani H, Essawi WM, Alsahli TG, Alharbi KS, Alzarea SI, Al-Hejaili HY, Gaafar SF. Evaluation of anti-cancer effects of carnosine and melittin-loaded niosomes in MCF-7 and MDA-MB-231 breast cancer cells. Front Pharmacol 2023; 14:1258387. [PMID: 37808196 PMCID: PMC10552532 DOI: 10.3389/fphar.2023.1258387] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background: We investigated the anti-cancer effect of carnosine-loaded niosomes (Car-NIO) and melittin-loaded niosomes (Mel-NIO) with olaparib in breast cancer cell lines (MCF-7 and MDA-MB-231). Methods: The thin film method was used for preparing the niosomes and characterized in terms of morphology, size, and polydispersity index (PDI). We further evaluated the impact of these peptides on breast cancer cells viability, RT-qPCR assays, malondialdehyde (MDA) activity, and cell cycle progression, to determine if these are linked to carnosine and melittin's anti-proliferative properties. Results: Car-NIO and Mel-NIO in vitro study inhibited cancer cell viability. They have also upregulated the expression of protein 53 (P53), BCL2-Associated X Protein (Bax), caspase-9, caspase-3, programmed cell death 4 (PDCD4), and Forkhead box O3 (FOXO3), while downregulated the expression of B-cell lymphoma 2 (Bcl2), poly (ADP-ribose) polymerase (PARP 1), and MicroRNA-183 (miRNA-183). The MCF-7 cells were arrested at the G2/M phase in Car-NIO, on the other hand, the MDA-MB-231 cells were arrested at the S phase. While the Mel-NIO and olaparib arrested the MCF-7 and MDA-MB-231 cells at the G0/1 phase. Conclusion: Our study successfully declared that Mel-NIO had more anti-cancer effects than Car-NIO in both MCF-7 and MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Mohamed M. A. Hussein
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Haitham Eldoumani
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Walaa M. Essawi
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Tariq G. Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hassan Y. Al-Hejaili
- Pharmaceutical Care Department, King Salman Bin Abdulaziz Medical City, Ministry of Health, Medina, Saudi Arabia
| | - Sara F. Gaafar
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Chmielewska K, Dzierzbicka K, Inkielewicz-Stępniak I, Przybyłowska M. Therapeutic Potential of Carnosine and Its Derivatives in the Treatment of Human Diseases. Chem Res Toxicol 2020; 33:1561-1578. [PMID: 32202758 DOI: 10.1021/acs.chemrestox.0c00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant progress in the pathogenesis, diagnosis, treatment, and prevention of cancer and neurodegenerative diseases, their occurrence and mortality are still high around the world. The resistance of cancer cells to the drugs remains a significant problem in oncology today, while in the case of neuro-degenerative diseases, therapies reversing the process are still yet to be found. Furthermore, it is important to seek new chemotherapeutics reversing side effects of currently used drugs or helping them perform their function to inhibit progression of the disease. Carnosine, a dipeptide constisting of β-alanine and l-histidine, has a variety of functions to mention: antioxidant, antiglycation, and reducing the toxicity of metal ions. It has therefore been proposed to act as a therapeutic agent for many pathological states. The aim of this paper was to find if carnosine and its derivatives can be helpful in treating various diseases. Literature search presented in this review includes review and original papers found in SciFinder, PubMed, and Google Scholar. Searches were based on substantial keywords concerning therapeutic usage of carnosine and its derivatives in several diseases including neurodegenerative disorders and cancer. In this paper, we review articles and find that carnosine and its derivatives are potential therapeutic agents in many diseases including cancer, neurodegenerative diseases, diabetes, and schizophrenia. Carnosine and its derivatives can be used in treating neurodegenerative diseases, cancer, diabetes, or schizophrenia, although their usage is limited. Therefore, there's an urge to synthesize and analyze new substances, overcoming the limitation of carnosine itself.
Collapse
Affiliation(s)
- Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Iwona Inkielewicz-Stępniak
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| |
Collapse
|
3
|
Cardullo N, Barresi V, Muccilli V, Spampinato G, D’Amico M, Condorelli DF, Tringali C. Synthesis of Bisphenol Neolignans Inspired by Honokiol as Antiproliferative Agents. Molecules 2020; 25:molecules25030733. [PMID: 32046220 PMCID: PMC7037512 DOI: 10.3390/molecules25030733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Honokiol (2) is a natural bisphenol neolignan showing a variety of biological properties, including antitumor activity. Some studies pointed out 2 as a potential anticancer agent in view of its antiproliferative and pro-apoptotic activity towards tumor cells. As a further contribution to these studies, we report here the synthesis of a small library of bisphenol neolignans inspired by honokiol and the evaluation of their antiproliferative activity. The natural lead was hence subjected to simple chemical modifications to obtain the derivatives 3–9; further neolignans (12a-c, 13a-c, 14a-c, and 15a) were synthesized employing the Suzuki–Miyaura reaction, thus obtaining bisphenols with a substitution pattern different from honokiol. These compounds and the natural lead were subjected to antiproliferative assay towards HCT-116, HT-29, and PC3 tumor cell lines. Six of the neolignans show GI50 values lower than those of 2 towards all cell lines. Compounds 14a, 14c, and 15a are the most effective antiproliferative agents, with GI50 in the range of 3.6–19.1 µM, in some cases it is lower than those of the anticancer drug 5-fluorouracil. Flow cytometry experiments performed on these neolignans showed that the inhibition of proliferation is mainly due to an apoptotic process. These results indicate that the structural modification of honokiol may open the way to obtaining antitumor neolignans more potent than the natural lead.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
- Correspondence: (C.T.); (N.C.); Tel.: +39-095-7385025 (C.T.)
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (V.B.); (G.S.); (M.D.); (D.F.C.)
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (V.B.); (G.S.); (M.D.); (D.F.C.)
| | - Morgana D’Amico
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (V.B.); (G.S.); (M.D.); (D.F.C.)
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (V.B.); (G.S.); (M.D.); (D.F.C.)
| | - Corrado Tringali
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
- Correspondence: (C.T.); (N.C.); Tel.: +39-095-7385025 (C.T.)
| |
Collapse
|
4
|
Accardo A, Mannucci S, Nicolato E, Vurro F, Diaferia C, Bontempi P, Marzola P, Morelli G. Easy formulation of liposomal doxorubicin modified with a bombesin peptide analogue for selective targeting of GRP receptors overexpressed by cancer cells. Drug Deliv Transl Res 2018; 9:215-226. [DOI: 10.1007/s13346-018-00606-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Bonaccorso C, Grasso G, Musso N, Barresi V, Condorelli DF, La Mendola D, Rizzarelli E. Water soluble glucose derivative of thiocarbohydrazone acts as ionophore with cytotoxic effects on tumor cells. J Inorg Biochem 2018; 182:92-102. [PMID: 29452884 DOI: 10.1016/j.jinorgbio.2018.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/26/2022]
Abstract
A novel water-soluble ionophore based on the thiocarbohydrazone moiety conjugated with glucose (GluTch) was synthesized through a simple two-step procedure. Structural elucidation was carried out in water solution by means of various spectroscopic techniques (NMR, UV-Vis, and CD), electrospray ionization mass spectrometry and density functional theory calculations. The flexible nature of the thiocarbohydrazone moiety of the new glycoderivative compound induced both different coordination motifs and stoichiometry towards copper and zinc. Cytotoxicity assays of the ligands on the human normal keratinocyte NCTC-2544, MDA-MB-231 breast cancer and PC-3 human prostate adenocarcinoma cell lines demonstrated that i) higher activity on cancer cells growth inhibition compared to a normal cell line; ii) the introduction of the glucose unit does not alter the cytotoxic activity of the underivatized ionophore ligand and iii) the presence of copper ion improves the activity of the thiocarbohydrazones.
Collapse
Affiliation(s)
- Carmela Bonaccorso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, via Celso Ulpiani, 27, 70125 Bari, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Nicolò Musso
- Dipartimento Scienze Biomediche e Biotecnologiche, Sez. Biochimica Medica, via S. Sofia 64, I-95125, Catania, Italy
| | - Vincenza Barresi
- Dipartimento Scienze Biomediche e Biotecnologiche, Sez. Biochimica Medica, via S. Sofia 64, I-95125, Catania, Italy
| | - Daniele F Condorelli
- Dipartimento Scienze Biomediche e Biotecnologiche, Sez. Biochimica Medica, via S. Sofia 64, I-95125, Catania, Italy
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, via Celso Ulpiani, 27, 70125 Bari, Italy.
| | - Enrico Rizzarelli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, via Celso Ulpiani, 27, 70125 Bari, Italy
| |
Collapse
|
6
|
Synthesis and Experimental Validation of New Designed Heterocyclic Compounds with Antiproliferative Activity versus Breast Cancer Cell Lines MCF-7 and MDA-MB-231. J CHEM-NY 2017. [DOI: 10.1155/2017/9729284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent drug discovery efforts are highly focused towards identification, design, and synthesis of small molecules as anticancer agents. With this aim, we recently designed and synthesized novel compounds with high efficacy and specificity for the treatment of breast tumors. Based on the obtained results, we constructed a Volsurf+ (VS+) model using a dataset of 59 compounds able to predict the in vitro antitumor activity against MCF-7 cancer cell line for new derivatives. In the present paper, in order to further verify the robustness of this model, we report the results of the projection of more than 150 known molecules and 9 newly synthesized compounds. We predict their activity versus MCF-7 cell line and experimentally verify the in silico results for some promising chosen molecules in two human breast cell lines, MCF-7 and MDA-MB-231.
Collapse
|