1
|
Lindahl PA, Vali SW. Mössbauer-based molecular-level decomposition of the Saccharomyces cerevisiae ironome, and preliminary characterization of isolated nuclei. Metallomics 2022; 14:mfac080. [PMID: 36214417 PMCID: PMC9624242 DOI: 10.1093/mtomcs/mfac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
One hundred proteins in Saccharomyces cerevisiae are known to contain iron. These proteins are found mainly in mitochondria, cytosol, nuclei, endoplasmic reticula, and vacuoles. Cells also contain non-proteinaceous low-molecular-mass labile iron pools (LFePs). How each molecular iron species interacts on the cellular or systems' level is underdeveloped as doing so would require considering the entire iron content of the cell-the ironome. In this paper, Mössbauer (MB) spectroscopy was used to probe the ironome of yeast. MB spectra of whole cells and isolated organelles were predicted by summing the spectral contribution of each iron-containing species in the cell. Simulations required input from published proteomics and microscopy data, as well as from previous spectroscopic and redox characterization of individual iron-containing proteins. Composite simulations were compared to experimentally determined spectra. Simulated MB spectra of non-proteinaceous iron pools in the cell were assumed to account for major differences between simulated and experimental spectra of whole cells and isolated mitochondria and vacuoles. Nuclei were predicted to contain ∼30 μM iron, mostly in the form of [Fe4S4] clusters. This was experimentally confirmed by isolating nuclei from 57Fe-enriched cells and obtaining the first MB spectra of the organelle. This study provides the first semi-quantitative estimate of all concentrations of iron-containing proteins and non-proteinaceous species in yeast, as well as a novel approach to spectroscopically characterizing LFePs.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX, USA
| | - Shaik Waseem Vali
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Kamnev AA, Tugarova AV. Bioanalytical applications of Mössbauer spectroscopy. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Data on the applications of Mössbauer spectroscopy in the transmission (mainly on 57Fe nuclei) and emission (on 57Co nuclei) variants for analytical studies at the molecular level of metal-containing components in a wide range of biological objects (from biocomplexes and biomacromolecules to supramolecular structures, cells, tissues and organisms) and of objects that are participants or products of biological processes, published in the last 15 years are discussed and systematized. The prospects of the technique in its biological applications, including the developing fields (emission variant, use of synchrotron radiation), are formulated.
The bibliography includes 248 references.
Collapse
|
3
|
Saccharomyces cerevisiae Concentrates Subtoxic Copper onto Cell Wall from Solid Media Containing Reducing Sugars as Carbon Source. Bioengineering (Basel) 2021; 8:bioengineering8030036. [PMID: 33800957 PMCID: PMC8000517 DOI: 10.3390/bioengineering8030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/04/2022] Open
Abstract
Copper is essential for life, but it can be deleterious in concentrations that surpass the physiological limits. Copper pollution is related to widespread human activities, such as viticulture and wine production. To unravel aspects of how organisms cope with copper insults, we used Saccharomyces cerevisiae as a model for adaptation to high but subtoxic concentrations of copper. We found that S. cerevisiae cells could tolerate high copper concentration by forming deposits on the cell wall and that the copper-containing deposits accumulated predominantly when cells were grown statically on media prepared with reducing sugars (glucose, galactose) as sole carbon source, but not on media containing nonreducing carbon sources, such as glycerol or lactate. Exposing cells to copper in liquid media under strong agitation prevented the formation of copper-containing deposits at the cell wall. Disruption of low-affinity copper intake through the plasma membrane increased the potential of the cell to form copper deposits on the cell surface. These results imply that biotechnology problems caused by high copper concentration can be tackled by selecting yeast strains and conditions to allow the removal of excess copper from various contaminated sites in the forms of solid deposits which do not penetrate the cell.
Collapse
|
4
|
Li J, Zheng T, Yuan D, Gao C, Liu C. Probing the single and combined toxicity of PFOS and Cr(VI) to soil bacteria and the interaction mechanisms. CHEMOSPHERE 2020; 249:126039. [PMID: 32062202 DOI: 10.1016/j.chemosphere.2020.126039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 01/25/2020] [Indexed: 05/24/2023]
Abstract
Many research focused on the removal of perfluorooctane sulfonic acid (PFOS) and hexavalent chromium (Cr(VI)) in some industrial wastewater (e.g. electroplating wastewater), but few research reported the combined toxicity of PFOS and Cr(VI) to soil bacteria. Therefore, the toxicity and mechanisms of the combined PFOS and Cr(VI) to bacteria (with Bacillus subtilis as a model) are explored. The results show that the combined PFOS and Cr(VI) exhibits much higher toxicity to the bacteria than that of Cr(VI) alone. The growth profile of Bacillus subtilis exposed by the combined pollution decreased by 18% and 56%, respectively, compared with that of single Cr(VI) and the control, indicating the combined toxicity to Bacillus subtilis is synergistic. Moreover, the changes of EPSs in Bacillus subtilis, such as decreased potential, increased extracellular polysaccharides, decreased extracellular proteins and irregular morphology, also confirmed that the combined PFOS and Cr(VI) caused greater toxicity. The increase of intracellular ROS and permeability of dye 4', 6-diamidino-2-phenylindoledihydrochloride (DAPI) suggest that oxidative damage and increased membrane permeability are the main mechanisms of toxicity induced by the combined PFOS and Cr(VI). This work could provide useful information for the risk assessment of co-exposure to PFOS and heavy metals in the natural environment.
Collapse
Affiliation(s)
- Jie Li
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Tongtong Zheng
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Dong Yuan
- Department of Chemistry and Chemical Engineering, Qilu Normal University, Shandong Province, 36# Lishan Road, Jinan, 250013, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, PR China.
| |
Collapse
|
5
|
Lindahl PA. A comprehensive mechanistic model of iron metabolism in Saccharomyces cerevisiae. Metallomics 2019; 11:1779-1799. [PMID: 31531508 DOI: 10.1039/c9mt00199a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ironome of budding yeast (circa 2019) consists of approximately 139 proteins and 5 nonproteinaceous species. These proteins were grouped according to location in the cell, type of iron center(s), and cellular function. The resulting 27 groups were used, along with an additional 13 nonprotein components, to develop a mesoscale mechanistic model that describes the import, trafficking, metallation, and regulation of iron within growing yeast cells. The model was designed to be simultaneously mutually autocatalytic and mutually autoinhibitory - a property called autocatinhibitory that should be most realistic for simulating cellular biochemical processes. The model was assessed at the systems' level. General conclusions are presented, including a new perspective on understanding regulatory mechanisms in cellular systems. Some unsettled issues are described. This model, once fully developed, has the potential to mimic the phenotype (at a coarse-grain level) of all iron-related genetic mutations in this simple and well-studied eukaryote.
Collapse
Affiliation(s)
- Paul A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3255, USA.
| |
Collapse
|
6
|
Ramos-Alonso L, Wittmaack N, Mulet I, Martínez-Garay CA, Fita-Torró J, Lozano MJ, Romero AM, García-Ferris C, Martínez-Pastor MT, Puig S. Molecular strategies to increase yeast iron accumulation and resistance. Metallomics 2019; 10:1245-1256. [PMID: 30137082 DOI: 10.1039/c8mt00124c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constitutively active, Aft1 inhibits growth probably due to iron toxicity. In this report, we have studied the consequences of using hyperactive AFT1 alleles, including AFT1-1UP, to increase yeast iron accumulation. We first characterized the iron sensitivity of cells expressing different constitutively active AFT1 alleles. We rescued the high iron sensitivity conferred by the AFT1 alleles by deleting the sphingolipid signaling kinase YPK1. We observed that the deletion of YPK1 exerts different effects on iron accumulation depending on the AFT1 allele and the environmental iron. Moreover, we determined that the impairment of the high-affinity iron transport system partially rescues the high iron toxicity of AFT1-1UP-expressing cells. Finally, we observed that AFT1-1UP inhibits oxygen consumption through activation of the RNA-binding protein Cth2. Deletion of CTH2 partially rescues the AFT1-1UP negative respiratory effect. Collectively, these results contribute to understand how the Aft1 transcription factor functions and the multiple consequences derived from its constitutive activation.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wofford JD, Bolaji N, Dziuba N, Outten FW, Lindahl PA. Evidence that a respiratory shield in Escherichia coli protects a low-molecular-mass Fe II pool from O 2-dependent oxidation. J Biol Chem 2018; 294:50-62. [PMID: 30337367 DOI: 10.1074/jbc.ra118.005233] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/16/2018] [Indexed: 11/06/2022] Open
Abstract
Iron is critical for virtually all organisms, yet major questions remain regarding the systems-level understanding of iron in whole cells. Here, we obtained Mössbauer and EPR spectra of Escherichia coli cells prepared under different nutrient iron concentrations, carbon sources, growth phases, and O2 concentrations to better understand their global iron content. We investigated WT cells and those lacking Fur, FtnA, Bfr, and Dps proteins. The coarse-grain iron content of exponentially growing cells consisted of iron-sulfur clusters, variable amounts of nonheme high-spin FeII species, and an unassigned residual quadrupole doublet. The iron in stationary-phase cells was dominated by magnetically ordered FeIII ions due to oxyhydroxide nanoparticles. Analysis of cytosolic extracts by size-exclusion chromatography detected by an online inductively coupled plasma mass spectrometer revealed a low-molecular-mass (LMM) FeII pool consisting of two iron complexes with masses of ∼500 (major) and ∼1300 (minor) Da. They appeared to be high-spin FeII species with mostly oxygen donor ligands, perhaps a few nitrogen donors, and probably no sulfur donors. Surprisingly, the iron content of E. coli and its reactivity with O2 were remarkably similar to those of mitochondria. In both cases, a "respiratory shield" composed of membrane-bound iron-rich respiratory complexes may protect the LMM FeII pool from reacting with O2 When exponentially growing cells transition to stationary phase, the shield deactivates as metabolic activity declines. Given the universality of oxidative phosphorylation in aerobic biology, the iron content and respiratory shield in other aerobic prokaryotes might be similar to those of E. coli and mitochondria.
Collapse
Affiliation(s)
- Joshua D Wofford
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Naimah Bolaji
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Nathaniel Dziuba
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, Texas 77843; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.
| |
Collapse
|
8
|
Kamnev AA, Tugarova AV. Sample treatment in Mössbauer spectroscopy for protein-related analyses: Nondestructive possibilities to look inside metal-containing biosystems. Talanta 2017; 174:819-837. [PMID: 28738659 DOI: 10.1016/j.talanta.2017.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 01/07/2023]
Abstract
In this review, the unique possibilities are considered of the 57Fe transmission (TMS) and 57Co emission (EMS) variants of Mössbauer (nuclear γ-resonance) spectroscopy as nondestructive techniques with minimal sample preparation/treatment and a significant analytical potential, with a focus on the analysis of cation-binding sites in metalloproteins. The techniques are shown to provide unique structural and quantitative information on the coordination microenvironment, the chemical state and transformations of the Mössbauer nuclides in sophisticated metal-containing proteins, including those within complicated supramolecular structures, and in microbial cells or tissues. Recent representative examples of analyses of Fe-containing proteins by 57Fe TMS are briefly discussed, along with the newly emerging data on using 57Co EMS for probing the structural organisation of 57Co-doped cation-binding sites in sophisticated biocomplexes including metalloenzymes. Finally, some rare or exotic applications of Mössbauer spectroscopy (including the synchrotron-based methodology) in protein-related studies are outlined.
Collapse
Affiliation(s)
- Alexander A Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049, Saratov, Russia.
| | - Anna V Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049, Saratov, Russia
| |
Collapse
|