1
|
Bose S, Senthil Kumar P, Rangasamy G, Prasannamedha G, Kanmani S. A review on the applicability of adsorption techniques for remediation of recalcitrant pesticides. CHEMOSPHERE 2023; 313:137481. [PMID: 36529165 DOI: 10.1016/j.chemosphere.2022.137481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Pesticide has revolutionised the agricultural industry by reducing yield losses and by enhancing productivity. But indiscriminate usage of such chemicals can negatively impact human health and ecosystem balance as certain pesticides can be recalcitrant in nature. Out of some of the suggested sustainable techniques to remove the pesticide load from the environment, adsorption is found to be highly efficient and can also be implemented on a large scale. It has been observed that natural adsorption that takes place after the application of the pesticide is not enough to reduce the pesticide load, hence, adsorbents like activated carbon, plant-based adsorbents, agricultural by-products, silica materials, polymeric adsorbents, metal organic framework etc are being experimented upon. It is becoming increasingly important to choose adsorbents which will not leave any secondary pollutant after treatment and the cost of production of such adsorbent should be feasible. In this review paper, it has been established that certain adsorbent like biochar, hydrochar, resin, metal organic framework etc can efficiently remove pesticides namely chlorpyrifos, diazinon, 2,4-Dichlorophenoxyacetic Acid, atrazine, fipronil, imidacloprid etc. The mechanism of adsorption, thermodynamics and kinetic part have been discussed in detail with respect to the pesticide and adsorbent under discussion. The reason behind choosing an adsorbent for the removal of a particular pesticide have also been explained. It is further highly recommended to carry out a cost analysis before implementing an absorbent because inspite of its efficacy, it might not be cost effective to use it for a particular type of pesticide or contaminant.
Collapse
Affiliation(s)
- Sanchali Bose
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - G Prasannamedha
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - S Kanmani
- Centre for Environmental Studies, Department of Civil Engineering, Anna University, Chennai, 600025, India
| |
Collapse
|
2
|
Emam HE, Abdelhameed RM. Separation of anthocyanin from roselle extract by cationic nano-rode ZIF-8 constructed using removable template. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
dos Santos FKF, de Rezende CM, da Veiga Júnior VF. Macroporous polymeric resins as a tool to obtain bioactive compounds in food and food-waste: a review. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Li G, Gao X, Qin G, Lei J, Jiang Y, Linghu L, Zhang C, Zhang J, Wang Y, Wang M, He Y, Wang G. Purification of biflavonoids from Selaginelladoe derleinii Hieron by special covalent organic polymers material. J Chromatogr A 2022; 1668:462920. [DOI: 10.1016/j.chroma.2022.462920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
|
5
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Müller-Maatsch J, Gurtner K, Carle R, Björn Steingass C. Investigation into the removal of glucosinolates and volatiles from anthocyanin-rich extracts of red cabbage. Food Chem 2019; 278:406-414. [DOI: 10.1016/j.foodchem.2018.10.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022]
|
7
|
Zhang P, Wang L, Fang S. Modeling of the Adsorption/Desorption Characteristics and Properties of Anthocyanins from Extruded Red Cabbage Juice by Macroporous Adsorbent Resin. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2018-0239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractThe adsorption/desorption characteristics, modeling and properties of anthocyanins from extruded red cabbage juice by macroporous resins were investigated. The static adsorption and desorption capacities of red cabbage anthocyanins on five macroporous resins were measured and compared. The X-5 resin showed the best capacities and was selected for the adsorption kinetics, isotherms and elution studies. The pseudo-second-order kinetic model and Langmuir isotherm model were used to describe the adsorption process and mechanism. Dynamic adsorption and desorption tests were performed on a fixed-bed column, and the loading and eluent conditions were optimized. The purity of anthocyanins in freeze-dried purified powder by the resin adsorption process is 21.3 ± 0.9 wt % and shows better stability in the air than the unpurified one. Finally, the antioxidant activity and color properties including color density, color intensity, color tonality and degradation index of the purified powders were measured.
Collapse
Affiliation(s)
- Pingjing Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou310018, China
| | - Liping Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou310018, China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou310018, China
| |
Collapse
|
8
|
Pérez-Larrán P, Díaz-Reinoso B, Moure A, Alonso JL, Domínguez H. Adsorption technologies to recover and concentrate food polyphenols. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2017.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Establishment of an HPLC method for testing acetylcholinesterase inhibitory activity and compared with traditional spectrophotometry. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0459-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Sun L, Liu D, Sun J, Yang X, Fu M, Guo Y. Simultaneous separation and purification of chlorogenic acid, epicatechin, hyperoside and phlorizin from thinned young Qinguan apples by successive use of polyethylene and polyamide resins. Food Chem 2017; 230:362-371. [PMID: 28407923 DOI: 10.1016/j.foodchem.2017.03.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/21/2017] [Accepted: 03/11/2017] [Indexed: 01/06/2023]
Abstract
The method for separating and purifying chlorogenic acid (CA), epicatechin (EC), hyperoside (HY) and phlorizin (PH) simutaneously from young Qinguan apples by successive use of X-5 and polyamide resins has been developed in this study. The order of adsorption capacities of X-5 for the four phenolics was PH>HY>EC>CA, and the adsorption equilibriums of the four phenolics onto X-5 resin conformed to Langmuir isotherms preferentially. The adsorption kinetics of EC and CA onto X-5 conformed to the pseudo-first-order model, while that of HY and PH accorded with the pseudo-second-order model. Interestingly, the values of equilibrium adsorption capacities (Qe) calculated in the preferential kinetics models were closer to that of theoretical maximum adsorption capacities (Q0) calculated by Langmuir isotherms. Through dynamic adsorption and desorption using X-5 and polyamide resins with ethanol solution as strippant, CA, EC, HY and PH were obtained with purities of 96.21%, 95.34%, 95.36% and 97.36%, respectively.
Collapse
Affiliation(s)
- Lijun Sun
- Centre of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China; Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072, Australia
| | - Dongjie Liu
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072, Australia
| | - Jiaojiao Sun
- Centre of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China
| | - Xingbin Yang
- Centre of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China
| | - Minghai Fu
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072, Australia.
| | - Yurong Guo
- Centre of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|