1
|
Raj C, Srimurugan V, Sundheep R, Neelakantan L. Enhanced electrochemical capacitance of a surfactant modified hierarchical Co(OH)2/TiO2 nanotube array for supercapacitor applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Santos JS, Araújo PDS, Pissolitto YB, Lopes PP, Simon AP, Sikora MDS, Trivinho-Strixino F. The Use of Anodic Oxides in Practical and Sustainable Devices for Energy Conversion and Storage. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E383. [PMID: 33466856 PMCID: PMC7830790 DOI: 10.3390/ma14020383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
This review addresses the main contributions of anodic oxide films synthesized and designed to overcome the current limitations of practical applications in energy conversion and storage devices. We present some strategies adopted to improve the efficiency, stability, and overall performance of these sustainable technologies operating via photo, photoelectrochemical, and electrochemical processes. The facile and scalable synthesis with strict control of the properties combined with the low-cost, high surface area, chemical stability, and unidirectional orientation of these nanostructures make the anodized oxides attractive for these applications. Assuming different functionalities, TiO2-NT is the widely explored anodic oxide in dye-sensitized solar cells, PEC water-splitting systems, fuel cells, supercapacitors, and batteries. However, other nanostructured anodic films based on WO3, CuxO, ZnO, NiO, SnO, Fe2O3, ZrO2, Nb2O5, and Ta2O5 are also explored and act as the respective active layers in several devices. The use of AAO as a structural material to guide the synthesis is also reported. Although in the development stage, the proof-of-concept of these devices demonstrates the feasibility of using the anodic oxide as a component and opens up new perspectives for the industrial and commercial utilization of these technologies.
Collapse
Affiliation(s)
- Janaina Soares Santos
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| | - Patrícia dos Santos Araújo
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| | - Yasmin Bastos Pissolitto
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| | - Paula Prenholatto Lopes
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| | - Anna Paulla Simon
- Department of Chemistry, Universidade Tecnológica Federal do Paraná (UTFPR), Via do Conhecimento Km 1, Pato Branco 85503-390, Brazil; (A.P.S.); (M.d.S.S.)
- Chemistry Graduate Program, Campus CEDETEG, Midwestern Parana State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, Guarapuava 85040-167, Brazil
| | - Mariana de Souza Sikora
- Department of Chemistry, Universidade Tecnológica Federal do Paraná (UTFPR), Via do Conhecimento Km 1, Pato Branco 85503-390, Brazil; (A.P.S.); (M.d.S.S.)
- Chemistry Graduate Program, Campus CEDETEG, Midwestern Parana State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, Guarapuava 85040-167, Brazil
| | - Francisco Trivinho-Strixino
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| |
Collapse
|
3
|
Derivation of both EDLC and pseudocapacitance characteristics based on synergistic mixture of NiCo2O4 and hollow carbon nanofiber: An efficient electrode towards high energy density supercapacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Yu G, Zhang X, Sang Y, Wang Z, Hu X, Xu X, Li L, Liu H, Wang JJ. Synthesis and characterization of a coaxial carbon-TiO2 nanotube arrays film with spectral response from UV to NIR and its application in solar energy conversion. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Liu J, Xu J, Wang Y, Cui J, Tan HH, Wu Y. Electrochemical hydrogenated TiO2nanotube arrays decorated with 3D cotton-like porous MnO2enables superior supercapacitive performance. RSC Adv 2017. [DOI: 10.1039/c7ra04883a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly conducting TiO2nanotube arrays (EH-TNTAs) decorated with unique 3D cotton-like porous MnO2enables superior supercapacitive performance.
Collapse
Affiliation(s)
- Jiaqin Liu
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province
| | - Juan Xu
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
- School of Chemistry and Chemical Engineering
| | - Yan Wang
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province
| | - Jiewu Cui
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering
- Research School of Physics and Engineering
- The Australian National University
- Canberra
- Australia
| | - Yucheng Wu
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province
| |
Collapse
|
6
|
Yu C, Wang Y, Zheng H, Zhang J, Yang W, Shu X, Qin Y, Cui J, Zhang Y, Wu Y. Supercapacitive performance of homogeneous Co3O4/TiO2 nanotube arrays enhanced by carbon layer and oxygen vacancies. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3441-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|