1
|
Cheng Y, Chen J, Wang T, Wu Q, Shi D, Zhang Y, Chen K, Li H. Magnetically-separable acid-resistant CoFe2O4@Polymer@MIL-100 core-shell catalysts for the acetalization of benzaldehyde and methanol. J Colloid Interface Sci 2023; 629:571-581. [DOI: 10.1016/j.jcis.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
|
2
|
Tobita F, Yasukawa T, Yamashita Y, Kobayashi S. Aerobic oxidation of alcohols enabled by nitrogen-doped copper nanoparticle catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01777b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterogeneous nitrogen-doped carbon-incarcerated copper nanoparticle catalysts have been developed.
Collapse
Affiliation(s)
- Fumiya Tobita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Yasukawa
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Metal Organic Frameworks as Heterogeneous Catalysts in Olefin Epoxidation and Carbon Dioxide Cycloaddition. INORGANICS 2021. [DOI: 10.3390/inorganics9110081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metal–organic frameworks (MOFs) are a family of porous crystalline materials that serve in some cases as versatile platforms for catalysis. In this review, we overview the recent developments about the use of these species as heterogeneous catalysts in olefin epoxidation and carbon dioxide cycloaddition. We report the most important results obtained in this field relating them to the presence of specific organic linkers, metal nodes or clusters and mixed-metal species. Recent advances obtained with MOF nanocomposites were also described. Finally we compare the results and summarize the major insights in specific Tables, outlining the major challenges for this emerging field. This work could promote new research aimed at producing coordination polymers and MOFs able to catalyse a broader range of CO2 consuming reactions.
Collapse
|
4
|
Xue Y, Zhao G, Yang R, Chu F, Chen J, Wang L, Huang X. 2D metal-organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. NANOSCALE 2021; 13:3911-3936. [PMID: 33595021 DOI: 10.1039/d0nr09064f] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ultrathin two-dimensional metal-organic frameworks (2D MOFs) have recently attracted extensive interest in various catalytic fields (e.g., electrocatalysis, photocatalysis, thermocatalysis) due to their ultrathin thickness, large surface area, abundant accessible unsaturated active sites and tunable surface properties. Besides tuning the intrinsic properties of pristine 2D MOFs by changing the metal nodes and organic ligands, one of the hot research trends is to develop 2D MOF hybrids and 2D MOF-derived materials with higher stability and conductivity in order to further increase their activity and durability. Here, the synthesis of 2D MOF nanosheets is briefly summarized and discussed. More attention is focused on summaries and discussions about the applications of these 2D MOFs, their hybrids and their derived materials as electrocatalysts, photocatalysts and thermocatalysts. The superior properties and catalytic performance of these 2D MOF-based catalysts compared to their 3D MOF counterparts in electrocatalysis, photocatalysis and thermocatalysis are highlighted. The enhanced activities of 2D MOFs, their hybrids and derivatives come from abundant accessible active sites, a high density of unsaturated metal nodes, ultrathin thickness, and tunable microenvironments around the MOFs. Views regarding current and future challenges in the field, and new advances in science and technology to meet these challenges, are also presented. Finally, conclusions and outlooks in this field are provided.
Collapse
Affiliation(s)
- Yanpeng Xue
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Gongchi Zhao
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Ruiying Yang
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Feng Chu
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Juan Chen
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Lei Wang
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Xiubing Huang
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| |
Collapse
|
5
|
Şenocak A. Fast, Simple and Sensitive Determination of Coumaric Acid in Fruit Juice Samples by Magnetite Nanoparticles‐zeolitic Imidazolate Framework Material. ELECTROANAL 2020. [DOI: 10.1002/elan.202060237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ahmet Şenocak
- Department of Chemistry Gebze Technical University 41400 Gebze, Kocaeli Turkey
| |
Collapse
|
6
|
Gopalan Sibi M, Verma D, Kim J. Magnetic core–shell nanocatalysts: promising versatile catalysts for organic and photocatalytic reactions. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2019.1659555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Malayil Gopalan Sibi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| | - Deepak Verma
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| | - Jaehoon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| |
Collapse
|
7
|
Yan W, Wang J, Ding J, Sun P, Zhang S, Shen J, Jin X. Catalytic epoxidation of olefins in liquid phase over manganese based magnetic nanoparticles. Dalton Trans 2019; 48:16827-16843. [PMID: 31646315 DOI: 10.1039/c9dt03456k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epoxidation of olefins stands out as a crucial class of reactions and is of great interest in academic research and industry due to the production of various important fine chemicals and intermediates. Manganese complexes have the potential to catalyze the epoxidation of olefins with high efficiency. Magnetic nanocatalysts have attracted significant attention for immobilizing homogeneous transition metal complexes. Easy separation by external magnetic fields, nontoxicity, and a core shell structure are the main advantages of magnetic nanocatalysts over other heterogeneous catalysts. The method of functionalizing magnetic nanoparticles and of anchoring homogeneous metal complexes has significant effects on catalytic performance. Therefore, a critical review of recent research progress on manganese complexes' immobilization on magnetic nanoparticles for liquid phase olefin epoxidation is necessary. In this work, magnetic nanoparticles are categorized according to their preparation procedures and structures. The physical/chemical properties, catalytic performance for olefin epoxidation, reusability and plausible reaction mechanisms will be discussed, in an attempt to unravel the structure-function relationship and to guide the future study of MNPs' design for olefin epoxidations.
Collapse
Affiliation(s)
- Wenjuan Yan
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Jie Ding
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Puhua Sun
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Shuxia Zhang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| |
Collapse
|
8
|
Hou J, Hao J, Wang Y, Liu J. Synthesis of CuII/ZIF-8 Metal-organic Framework Catalyst and Its Application in the Aerobic Oxidation of Alcohols. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9133-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Degradation of diazinon pesticide using catalyzed persulfate with Fe3O4@MOF-2 nanocomposite under ultrasound irradiation. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.049] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Cu-doped zeolitic imidazolate framework catalysed highly selective conversion of alkynes to
$$\upbeta $$
β
-keto and vinyl sulfones using sodium sulfinates. J CHEM SCI 2019. [DOI: 10.1007/s12039-018-1582-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Han LJ, Ge FY, Sun GH, Gao XJ, Zheng HG. Effective adsorption of Congo red by a MOF-based magnetic material. Dalton Trans 2019; 48:4650-4656. [DOI: 10.1039/c9dt00813f] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A highly water-stable MOF-based magnetic material Fe3O4@ZTB-1 has been obtained, and it exhibited an excellent adsorption capacity for Congo red. The electrostatic interactions and hydrogen bond are responsible for binding of CR with Fe3O4@ZTB-1.
Collapse
Affiliation(s)
- Li-Juan Han
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210023
| | - Fa-Yuan Ge
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210023
| | - Guo-Hao Sun
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210023
| | - Xiang-Jing Gao
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210023
| | - He-Gen Zheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210023
| |
Collapse
|
12
|
Lin C, Xu K, Zheng R, Zheng Y. Immobilization of amidase into a magnetic hierarchically porous metal–organic framework for efficient biocatalysis. Chem Commun (Camb) 2019; 55:5697-5700. [DOI: 10.1039/c9cc02038a] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel core–shell magnetic hierarchically porous MOF has been designed and used for amidase immobilization, which demonstrated excellent catalytic performance.
Collapse
Affiliation(s)
- Chaoping Lin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Kongliang Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Renchao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
13
|
Zhao J, Wang W, Tang H, Ramella D, Luan Y. Modification of Cu2+ into Zr-based metal–organic framework (MOF) with carboxylic units as an efficient heterogeneous catalyst for aerobic epoxidation of olefins. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Blanckenberg A, Malgas-Enus R. Olefin epoxidation with metal-based nanocatalysts. CATALYSIS REVIEWS 2018. [DOI: 10.1080/01614940.2018.1492503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Angelique Blanckenberg
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, South Africa
| | - Rehana Malgas-Enus
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, South Africa
| |
Collapse
|
15
|
First-Row-Transition Ion Metals(II)-EDTA Functionalized Magnetic Nanoparticles as Catalysts for Solvent-Free Microwave-Induced Oxidation of Alcohols. Catalysts 2017. [DOI: 10.3390/catal7110335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
16
|
|
17
|
Solvent-Free Microwave-Induced Oxidation of Alcohols Catalyzed by Ferrite Magnetic Nanoparticles. Catalysts 2017. [DOI: 10.3390/catal7070222] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|