1
|
Osman EA, Karimi K, Chen Y, Hirka S, Charles RW, McKeague M. Design of Label-Free DNA Light-Up Aptaswitches for Multiplexed Biosensing. ACS Sens 2024. [PMID: 39705714 DOI: 10.1021/acssensors.4c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
We present a straightforward design approach to develop DNA-based light-up aptasensors. We performed the first systematic comparison of DNA fluorescent light-up aptamers (FLAPs), revealing key differences in affinity and specificity for their target dyes. Based on our analysis, two light-up aptamers emerged with remarkable specificity, fluorescence enhancement, and functionality in diverse environments. We then established generalizable design rules to couple the DNA FLAPs to small molecule-binding aptamers, creating 13 novel aptaswitches with reliable turn-on or turn-off aptaswitching in a dose-response manner. We developed new aptaswitches for ochratoxin A and ATP biosensing with up to a seven-fold response and low background. Finally, we demonstrated the orthogonal activity of our aptaswitch platforms. As a result, we introduce fluorescent light-up aptaswitches for one-pot detection of different targets in diverse sample matrices.
Collapse
Affiliation(s)
- Eiman A Osman
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Kimiya Karimi
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Yuhao Chen
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Serhii Hirka
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Roberto W Charles
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maureen McKeague
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8, Canada
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
2
|
Zhang W, Luo M, Chen J, Li Z, Wei X, Wu M, Yang S, He Y, Wang X, Xiao Z. A simple and label-free fluorescent DNA sensor for visual detection of aptamer-based berberine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7130-7138. [PMID: 39292521 DOI: 10.1039/d4ay01411a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The intrinsic fluorescence of berberine is very weak, which can be enhanced by its interaction with specific aptamers. A simple and sensitive DNA sensor for visual detection of berberine has here been established. When using this sensor, there was a good linear relationship between the change in fluorescence intensity of berberine and the concentration of berberine in the range of 16-2000 nM, with a detection limit of 5.1 nM. The change in fluorescence intensity was caused by the addition of aptamers. A detection limit of 170.1 nM was acquired by reading the RGB values of fluorescent images with a smartphone for the quantification of berberine. Common antibiotics did not interfere with the measurement of the berberine concentration. The molecular ion peaks of the complexes formed by the aptamer and berberine could be clearly observed by electrospray ionization mass spectrometry. The UV-vis absorption spectra, circular dichroism spectra, and fluorescence spectra indicated a strong interaction between berberine and the aptamer. The dissociation constant (Kd) between berberine and the aptamer was 1.91 μM. This sensor was both simple and sensitive, requiring only a 21-base oligonucleotide. It realized a visual quantitative analysis with a smartphone. This method could also be used for similar fluorescence visualization determination of aptamer-based drug molecules.
Collapse
Affiliation(s)
- Wenjuan Zhang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Mingwan Luo
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Juan Chen
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Zhengxing Li
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Xian Wei
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Miqi Wu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Shengli Yang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Yuanju He
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Xiaoping Wang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Zhiyou Xiao
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| |
Collapse
|
3
|
Nuntawong P, Senoo A, Tayama Y, Caaveiro JMM, Morimoto S, Sakamoto S. An aptamer-based fluorometric method for the rapid berberine detection in Kampo medicines. Anal Chim Acta 2024; 1318:342930. [PMID: 39067935 DOI: 10.1016/j.aca.2024.342930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/08/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Berberine (BBR), a key component in Kampo medicine, is a cationic benzylisoquinoline alkaloid whose detection plays a critical role in the quality control of these traditional remedies. Traditional methods for detecting BBR often involve complex procedures, which can be time-consuming and costly. To address this challenge, our study focuses on developing a simpler, faster, and more efficient detection method for BBR in Kampo medicine formulations. RESULTS We successfully developed a rapid fluorometric detection method for BBR using colloidal gold nanoparticle-based systematic evolution of ligands by exponential enrichment (GOLD-SELEX). Initially, specific single-stranded DNA (ssDNA) sequences were selected for their ability to enhance BBR's fluorescence intensity. The optimal ssDNA sequence, identified as BBR38, was further truncated to produce BBR38S, a stem-loop ssDNA that improved fluorescence upon interaction with BBR. To further enhance the fluorescence, the BBR38S aptamer underwent additional modifications, including stem truncation and nucleotide mutations, resulting in the higher fluorescence variant BBR38S-3 A10C. The final product, TetBBR38S, a tetramer version of BBR38S-3 A10C, exhibited a linear detection range of 0.780-50.0 μg mL-1 and a limit of detection of 0.369 μg mL-1. The assay demonstrated sufficient selectivity and was successfully applied to analyze 128 different Kampo medicine formulations, accurately detecting BBR content with high precision. SIGNIFICANCE This study represents an advancement in Kampo medicine research, marking the first successful application of an aptamer-based approach for BBR detection in complex matrices. The developed method is not only simple and rapid (with a detection time of 5 min) but also cost-effective, which is crucial for widespread application.
Collapse
Affiliation(s)
- Poomraphie Nuntawong
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yorie Tayama
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jose M M Caaveiro
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Morimoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiichi Sakamoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
Kehrli J, Husser C, Ryckelynck M. Fluorogenic RNA-Based Biosensors of Small Molecules: Current Developments, Uses, and Perspectives. BIOSENSORS 2024; 14:376. [PMID: 39194605 DOI: 10.3390/bios14080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Small molecules are highly relevant targets for detection and quantification. They are also used to diagnose and monitor the progression of disease and infectious processes and track the presence of contaminants. Fluorogenic RNA-based biosensors (FRBs) represent an appealing solution to the problem of detecting these targets. They combine the portability of molecular systems with the sensitivity and multiplexing capacity of fluorescence, as well as the exquisite ligand selectivity of RNA aptamers. In this review, we first present the different sensing and reporting aptamer modules currently available to design an FRB, together with the main methodologies used to discover modules with new specificities. We next introduce and discuss how both modules can be functionally connected prior to exploring the main applications for which FRB have been used. Finally, we conclude by discussing how using alternative nucleotide chemistries may improve FRB properties and further widen their application scope.
Collapse
Affiliation(s)
- Janine Kehrli
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Claire Husser
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| |
Collapse
|
5
|
Chen S, Xu C, Zhu X, Li Z, Bie H, Yang Y, Yu J, Yang Y, Huang H. Plasmon-enhanced fluorescence combined with aptamer sensor based on Ag nanocubes for signal-amplified detection of berberine hydrochloride. Anal Chim Acta 2024; 1304:342579. [PMID: 38637044 DOI: 10.1016/j.aca.2024.342579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Plasmon enhanced fluorescent (PEF) with more "hot spots" play a critical role in signal amplified technology to avoid the intrinsic limitation of fluorophore which ascribed to a strong electromagnetic field at the tip structure. However, application of PEF technique to obtain a highly sensitive analysis of medicine was still at a very early stage. Herein, a simple but versatile Ag nanocubes (Agcubes)-based PEF sensor combined with aptamer (Agcubes@SiO2-QDs-Apt) was proposed for highly sensitive detection of berberine hydrochloride (BH). The distance between the plasma Agcubes and the red-emitted CdTe quantum dots (QDs) were regulated by the thickness of silica spacer. The three-dimensional finite-difference time-domain (3D-FDTD) simulation further revealed that Agcubes have a higher electromagnetic field than Ag nanospheres. Compared with PEF sensor, signal QDs-modified aptamer without Agcubes (QDs-Apt) showed a 10-fold higher detection limit. The linear range and detection limit of the Agcubes@SiO2-QDs-Apt were 0.1-100 μM, 87.3 nM, respectively. Furthermore, the PEF sensor was applied to analysis BH in the berberine hydrochloride tablets, compound berberine tablet and urine with good recoveries of 98.25-102.05%. These results demonstrated that the prepared PEF sensor has great potential for drug quality control and clinical analysis.
Collapse
Affiliation(s)
- Shilin Chen
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China
| | - Chenye Xu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xingzhen Zhu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhenghua Li
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China
| | - Haoran Bie
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yang Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jingtian Yu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yaqiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| | - He Huang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
6
|
Qi L, Gao Y, Pei S, Gong P, Chang X, Yan H, Zhang X. Fluorescence "light-up" sensor based on ligand/SiO 2@NH 2@cyanuric chloride nanoparticle interactions in alliance with salt dehydration for berberine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123330. [PMID: 37688880 DOI: 10.1016/j.saa.2023.123330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/12/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Berberine (BBR) is an important anti-inflammatory drug for the treatment of intestinal diseases. The quantification of BBR is required in clinical medicine because long-term or excessive intake can lead to drug resistance and adverse effects. In this study, SiO2@NH2@cyanuric chloride (CNCl) nanoparticles (NPs) were successfully prepared by covalently incorporating CNCl onto the surface of SiO2 NPs. Furthermore, a novel fluorescence "light-up" sensor for assaying BBR was established based on the interaction between BBR and SiO2@NH2@CNCl NPs. Although BBR was non-emissive in aqueous media, its fluorescence was considerably augmented because of the interaction with the as-prepared SiO2@NH2@CNCl NPs, and the enhancement factor was approximately three times larger than that of pure SiO2 NPs. Compared with SiO2 NPs, SiO2@NH2@CNCl NPs can interact with BBR through electrostatic interactions and π-π stacking. These interactions restricted the intramolecular motion and charge transfer of BBR, resulting in fluorescence enhancement. The sensor was sensitive, with a linear response over a concentration range of 25-2500 nM (R2 = 0.9905) and a detection limit (3σ/k) of 4.7 nM, and it had good selectivity for BBR in the presence of bovine serum albumin, amino acids, and metal ions. When the sensor was applied to real serum samples, rapid extraction and salt dehydration occurred to improve the efficiency of pretreatment, and satisfactory standard recovery rates (95%-96%) were achieved even when only small amounts of acetonitrile was used for protein precipitation. This strategy could serve as a reference for other studies requiring the analysis of drugs in biological samples.
Collapse
Affiliation(s)
- Liang Qi
- Department of Pharmacy, School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Ying Gao
- Department of Pharmacy, School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Shuya Pei
- Department of Pharmacy, School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Pin Gong
- Department of Pharmacy, School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiangna Chang
- Department of Pharmacy, School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hui Yan
- Department of Pharmacy, School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xinting Zhang
- Department of Pharmacy, School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
7
|
Goyal S, Singh P, Sengupta S, Muthukrishnan AB, Jayaraman G. DNA-Aptamer-Based qPCR Using Light-Up Dyes for the Detection of Nucleic Acids. ACS OMEGA 2023; 8:47277-47282. [PMID: 38107963 PMCID: PMC10719997 DOI: 10.1021/acsomega.3c07599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) is widely used in detection of nucleic acids, but existing methods either lack sequence-specific detection or are costly because they use chemically modified DNA probes. In this work, we apply a DNA aptamer and light-up dye-based chemistry for qPCR for nucleic acid quantification. In contrast to the conventional qPCR, in our method, we observe an exponential decrease in fluorescence upon DNA amplification. The qPCR method we developed produced consistent Ct vs log10 (DNA amount) standard curves, which have a linearfit with R2 value > 0.99. This qPCR technique was validated by quantifying gene targets from Streptococcus zooepidemicus (SzhasB) and Mycobacterium tuberculosis (MtrpoB). We show that our strategy is able to successfully detect DNA at as low as 800 copies/μL. To the best of our knowledge, this is the first study demonstrating the application of light-up dyes and DNA aptamers in qPCR.
Collapse
Affiliation(s)
| | - Prashant Singh
- Department of Biotechnology,
Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sudeshna Sengupta
- Department of Biotechnology,
Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Anantha Barathi Muthukrishnan
- Department of Biotechnology,
Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Guhan Jayaraman
- Department of Biotechnology,
Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
8
|
Zhou Z, Lan X, Zhu L, Zhang Y, Chen K, Zhang W, Xu W. Portable dual-aptamer microfluidic chip biosensor for Bacillus cereus based on aptamer tailoring and dumbbell-shaped probes. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130545. [PMID: 36493638 DOI: 10.1016/j.jhazmat.2022.130545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
As food-borne pathogens, Bacillus cereus not only produce toxins that contaminate food and threaten human health, but also rely on spores to resist extreme environments. At present, the detection of B. cereus is still at the genome level and it is not easily distinguished from other Bacilli of the same group. Herein, we obtained the aptamers of B. cereus in different phases through Cell-SELEX technology. Then, through step-by-step tailoring and molecular docking, the two best performing aptamers were ascertained and the interaction revealed between the repeated G bases in the aptamer and the polar amino acids in the α-helix of the epiprotein. Based on these aptamers, a multifunctional dumbbell-shaped probe and an ultrasensitive microfluidic chip biosensor were designed. Tests showed that the novel sensor is able to complete detection within 1 h with a limit of detection (LOD) of 9.27 CFU/mL. Moreover, the sensor can be used in complex food environments, such as milk and rice, is able to detect both vegetative cells and spores, and it can also distinguish B. thuringiensis from the same flora. This study can provide a reference for the future development of food-borne pathogenic bacteria aptamer selecting, target interaction analysis, detection methods and equipment.
Collapse
Affiliation(s)
- Ziqi Zhou
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xinyue Lan
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kehan Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Department of Mechanical Design and Manufacturing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wenqiang Zhang
- Department of Mechanical Design and Manufacturing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
R O'Steen M, M Kolpashchikov D. A self-assembling split aptamer multiplex assay for SARS-COVID19 and miniaturization of a malachite green DNA-based aptamer. SENSORS AND ACTUATORS REPORTS 2022; 4:100125. [PMID: 36373144 PMCID: PMC9635949 DOI: 10.1016/j.snr.2022.100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Multiplex assays often rely on expensive sensors incorporating covalently linked fluorescent dyes. Herein, we developed a self-assembling aptamer-based multiplex assay. This multiplex approach utilizes a previously established split aptamer sensor in conjugation with a novel split aptamer sensor based upon a malachite green DNA aptamer. This system was capable of simultaneous fluorescent detection of two SARS COVID-19-related sequences in one sample with individual sensors that possesses a limit of detection (LOD) in the low nM range. Optimization of the Split Malachite Green (SMG) sensor yielded a minimized aptamer construct, Mini-MG, capable of inducing fluorescence of malachite green in both a DNA hairpin and sensor format.
Collapse
Affiliation(s)
- Martin R O'Steen
- Chemistry Department, University of Central Florida, Orlando, FL, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- National Center for Forensic Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
10
|
Li W, Pei Y, Wang J. Development and analysis of a novel AF11-2 aptamer capable of enhancing the fluorescence of aflatoxin B1. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Fluorescent functional nucleic acid: Principles, properties and applications in bioanalyzing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Hu C, Jiang K, Shao Z, Shi M, Meng HM. A DNAzyme-based label-free fluorescent probe for guanosine-5'-triphosphate detection. Analyst 2021; 145:6948-6954. [PMID: 32852000 DOI: 10.1039/d0an01334j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Guanosine-5'-triphosphate (GTP) plays a key role in many important biological processes of cells. It is not only a primer for DNA replication and one of the four essential nucleoside triphosphates for mRNA synthesis, but also an energy source for translation and other important cellular processes. It can be converted to adenine nucleoside triphosphate (ATP), and the intracellular GTP level is closely related to the specific pathological state, so it is crucial to establish a simple and accurate method for the detection of GTP. Deoxyribozymes have unique catalytic and structural properties. One of the deoxyribozymes which is named DK2 with self-phosphorylation ability can transfer a phosphate from GTP to the 5' end in the presence of manganese(ii), while lambda exonuclease (λexo) catalyzes the gradual hydrolysis of double-stranded DNA molecules phosphorylated at the 5'-end from 5' to 3', but cannot cleave the 5'-OH end. The fluorescent dye SYBR Green I (SG I) can bind to dsDNA and produce significant fluorescence, but it can only give out weak fluorescence when it is mixed with a single strand. Here, we present a novel unlabeled fluorescence assay for GTP based on the self-phosphorylation of deoxyribozyme DK2 and the specific hydrolysis of λexo. Owing to the advantages of simple operation, high sensitivity, good specificity, low cost and without fluorophore (quenching group) labeling, this method has great potential in biological applications.
Collapse
Affiliation(s)
- Chengzhen Hu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China.
| | | | | | | | | |
Collapse
|
13
|
Kolpashchikov DM, Spelkov AA. Binary (Split) Light‐up Aptameric Sensors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201914919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dmitry M. Kolpashchikov
- Chemistry Department University of Central Florida Orlando FL 32816-2366 USA
- Burnett School of Biomedical Sciences University of Central Florida Orlando FL 32816 USA
| | - Alexander A. Spelkov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| |
Collapse
|
14
|
Kolpashchikov DM, Spelkov AA. Binary (Split) Light-up Aptameric Sensors. Angew Chem Int Ed Engl 2020; 60:4988-4999. [PMID: 32208549 DOI: 10.1002/anie.201914919] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 12/12/2022]
Abstract
This Minireview discusses the design and applications of binary (also known as split) light-up aptameric sensors (BLAS). BLAS consist of two RNA or DNA strands and a fluorogenic organic dye added as a buffer component. When associated, the two strands form a dye-binding site, followed by an increase in fluorescence of the aptamer-bound dye. The design is cost-efficient because it uses short oligonucleotides and does not require conjugation of organic dyes with nucleic acids. In some applications, BLAS design is preferable over monolithic sensors because of simpler assay optimization and improved selectivity. RNA-based BLAS can be expressed in cells and used for the intracellular monitoring of biological molecules. BLAS have been used as reporters of nucleic acid association events in RNA nanotechnology and nucleic-acid-based molecular computation. Other applications of BLAS include the detection of nucleic acids, proteins, and cancer cells, and potentially they can be tailored to report a broad range of biological analytes.
Collapse
Affiliation(s)
- Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Alexander A Spelkov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| |
Collapse
|
15
|
Fan YY, Deng X, Wang M, Li J, Zhang ZQ. A dual-function oligonucleotide-based ratiometric fluorescence sensor for ATP detection. Talanta 2020; 219:121349. [PMID: 32887077 DOI: 10.1016/j.talanta.2020.121349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/27/2023]
Abstract
Adenosine triphosphate (ATP) is the main energy currency of life that plays a vital role in supporting physiological activities in living organisms, including humans. Therefore, accurate and sensitive detection of ATP concentration is necessary in biochemical research and clinical diagnosis. Herein, a ratiometric fluorescence aptasensor was developed for ATP detection. A dual-function DNA strand comprising an ATP-binding aptamer (ABA) and berberine-binding aptamer (BBA) was designed and optimized, in which ABA can capture ATP and thioflavin T (ThT), whereas BBA can capture berberine. Interestingly, the fluorescence intensity of both berberine and ThT were enhanced as they were captured by this dual-function DNA strand. In the presence of ATP, the ABA on the 3'-end of the DNA bound specifically to its target, causing ThT release and a significant drop in ThT fluorescence. However, ATP had no significant effect on the interaction between berberine and DNA, remaining the enhanced fluorescence intensity of berberine stable. Based on this interesting phenomenon, a ratiometric fluorescence sensor was constructed that used the enhanced fluorescence intensity of berberine as reference to measure the fluorescence intensity of ThT for ATP detection. This ratiometric fluorescence strategy had excellent selectivity and high sensitivity towards ATP with a detection limit (3σ) as low as 24.8 nM. The feasibility of application of this method in biological samples was evaluated in human serum and urine samples, where it exhibited a good detection performance.
Collapse
Affiliation(s)
- Yao-Yao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Xu Deng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Man Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Jun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
16
|
WANG ZJ, CHEN EN, YANG G, ZHAO XY, QU F. Research Advances of Aptamers Selection for Small Molecule Targets. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60013-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Gao T, Luo Y, Li W, Cao Y, Pei R. Progress in the isolation of aptamers to light-up the dyes and the applications. Analyst 2020; 145:701-718. [DOI: 10.1039/c9an01825e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The progress in the selection of aptamers to light-up the dyes and the related applications are reviewed.
Collapse
Affiliation(s)
- Tian Gao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
18
|
Su D, Li N, Liu Y, Wang M, Su X. Ratiometric fluorescence strategy for p53 gene assay by using nitrogen doped graphene quantum dots and berberine as fluorescence reporters. Anal Chim Acta 2019; 1084:78-84. [DOI: 10.1016/j.aca.2019.07.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/10/2023]
|
19
|
Wang J, Wang Q, Luo Y, Gao T, Zhao Y, Pei R. In vitro selection of ssDNA aptamers that can specifically recognize and differentiate riboflavin and its derivative FAD. Talanta 2019; 204:424-430. [PMID: 31357315 DOI: 10.1016/j.talanta.2019.06.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 02/06/2023]
Abstract
It is very meaningful and useful to select specific aptamers with capacity to distinguish small structural analogues, but it is difficult to carry out by traditional affinity chromatography-SELEX (systematic evolution of ligands by exponential enrichment) based on immobilized target molecules. In this paper, as a proof of concept, we selected DNA aptamers that can specifically recognize and differentiate riboflavin and its derivative flavin adenine dinucleotide (FAD) by a modified method. Here, the random DNA library was indirectly immobilized on streptavidin functional agarose beads by hybridization with its biotinylated short complementary strand, and the specific affinity between aptamers and its target would induce the aptamers to release from beads. Binding specificity can be tailored by performing an additional negative SELEX with the structure analogue of target. After about 10 rounds of selection, 6 aptamers for riboflavin and 2 aptamers for FAD with good affinities were isolated, and their dissociation constants (Kds) were all at low micromolar level. Moreover, as expected, most of these aptamers show high affinity and excellent selectivity for target molecules, almost no binding to structure analogues and purines, indicating this simple method could be used to select specific aptamers to distinguish small molecular targets with similar structures.
Collapse
Affiliation(s)
- Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qinglin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
20
|
Sun Y, Yuan B, Deng M, Wang Q, Huang J, Guo Q, Liu J, Yang X, Wang K. A light-up fluorescence assay for tumor cell detection based on bifunctional split aptamers. Analyst 2019; 143:3579-3585. [PMID: 29999048 DOI: 10.1039/c8an01008k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Light-up aptamers have attracted growing attention due to their advantages of being label-free and having low fluorescence background. In this work, we developed a light-up fluorescence assay for label-free detection of tumor cells based on a bifunctional split aptamer (BFSA) that contained two DNA strands (BFSA-a and BFSA-b). BFSA-a and BFSA-b were constructed by combining aptamers ZY11 and ThT.2-2, which could specifically bind to the tumor cell SMMC-7721 and activate the fluorescence of thioflavin T (ThT). A Helper strand was introduced to hybridize with BFSA-b, and then BFSA-a and BFSA-b were separated if the target cell was absent. Only when the target cell is present can BFSA-a approach and hybridize with BFSA-b due to the 'induced-fit effect', which made the Helper strand dissociate. Then ThT bound to BFSA and the fluorescence of ThT was activated. The results indicated that this fluorescence assay had a good linear response to the target cells in the range of 250-20 000 cells in 100 μL binding buffer; the lowest cell number actually detected was 125 cells in 100 μL buffer. This assay also displayed excellent selectivity and was successfully applied to detect target cells in 20% human serum samples. The design of bifunctional split aptamers realized no-washing, label-free, low-cost, one-step detection of tumor cells, which could generate detectable fluorescence signals just by mixing nucleic acid aptamers and fluorescent reporter molecules with target cells. Such a design of aptamer probes also has the potential to construct stimuli-responsive controlled drug delivery systems.
Collapse
Affiliation(s)
- Yuqiong Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fan YY, Mou ZL, Wang M, Li J, Zhang J, Dang FQ, Zhang ZQ. Chimeric Aptamers-Based and MoS 2 Nanosheet-Enhanced Label-Free Fluorescence Polarization Strategy for Adenosine Triphosphate Detection. Anal Chem 2018; 90:13708-13713. [PMID: 30350952 DOI: 10.1021/acs.analchem.8b04107] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenosine triphosphate (ATP) as a primary energy source plays a unique role in the regulation of all cellular events. The necessity to detect ATP requires sensitive and accurate quantitative analytical strategies. Herein, we present our study of developing a MoS2 nanosheet-enhanced aptasensor for fluorescence polarization-based ATP detection. A bifunctional DNA strand was designed to consist of chimeric aptamers that recognize and capture ATP and berberine, a fluorescence enhancer. In the absence of ATP, the DNA strand bound to berberine will be hydrolyzed when Exonuclease I (Exo I) is introduced, releasing berberine as a result. In contrast, when ATP is present, ATP aptamer folds into a G-quadruplex structure; thus, the complex can resist degradation by Exo I to maintain berberine for fluorescent detection purpose. In addition, to magnify the fluorescence polarization (FP) signal, MoS2 nanosheets were also adopted in the system. This nanosheets-enhanced FP strategy is simple and facile which does not require traditional dye-labeled DNA strands and complex operation steps. The developed fluorescence polarization aptasensor showed high sensitivity for the quantification of ATP with a detection limit of 34.4 nM, performing well both in buffer solution and in biological samples.
Collapse
Affiliation(s)
- Yao-Yao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China.,Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University) , Ministry of Education , Xi'an 710062 , China
| | - Zhao-Li Mou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China.,Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University) , Ministry of Education , Xi'an 710062 , China
| | - Man Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Jun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Fu-Quan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China.,Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University) , Ministry of Education , Xi'an 710062 , China
| |
Collapse
|
22
|
Jiang LF, Chen BC, Chen B, Li XJ, Liao HL, Zhang WY, Wu L. Aptamer-functionalized Fe 3 O 4 magnetic nanoparticles as a solid-phase extraction adsorbent for the selective extraction of berberine from Cortex phellodendri. J Sep Sci 2017; 40:2933-2940. [PMID: 28556490 DOI: 10.1002/jssc.201700103] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/12/2017] [Accepted: 05/20/2017] [Indexed: 11/11/2022]
Abstract
The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe3 O4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri, but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid-phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer-functionalized Fe3 O4 magnetic nanoparticles, extraction time, temperature, pH value, Mg2+ concentration, elution time and solvent were optimized for the solid-phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer-functionalized Fe3 O4 magnetic nanoparticles-based solid-phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid-phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%.
Collapse
Affiliation(s)
- Ling-Feng Jiang
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, PR China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, PR China
| | - Bo-Cheng Chen
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, PR China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, PR China
| | - Ben Chen
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, PR China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, PR China
| | - Xue-Jian Li
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, PR China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, PR China
| | - Hai-Lin Liao
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, PR China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, PR China
| | - Wen-Yan Zhang
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, PR China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, PR China
| | - Lin Wu
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, PR China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, PR China
| |
Collapse
|