1
|
Vasanthan RJ, Pradhan S, Thangamuthu MD. Emerging Aspects of Triazole in Organic Synthesis: Exploring its Potential as a Gelator. Curr Org Synth 2024; 21:456-512. [PMID: 36221871 DOI: 10.2174/1570179420666221010094531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) - commonly known as the "click reaction" - serves as the most effective and highly reliable tool for facile construction of simple to complex designs at the molecular level. It relates to the formation of carbon heteroatomic systems by joining or clicking small molecular pieces together with the help of various organic reactions such as cycloaddition, conjugate addition, ring-opening, etc. Such dynamic strategy results in the generation of triazole and its derivatives from azides and alkynes with three nitrogen atoms in the five-membered aromatic azole ring that often forms gel-assembled structures having gelating properties. These scaffolds have led to prominent applications in designing advanced soft materials, 3D printing, ion sensing, drug delivery, photonics, separation, and purification. In this review, we mainly emphasize the different mechanistic aspects of triazole formation, which includes the synthesis of sugar-based and non-sugar-based triazoles, and their gel applications reported in the literature for the past ten years, as well as the upcoming scope in different branches of applied sciences.
Collapse
Affiliation(s)
- Rabecca Jenifer Vasanthan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Sheersha Pradhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Mohan Das Thangamuthu
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| |
Collapse
|
2
|
Morris J, Bietsch J, Bashaw K, Wang G. Recently Developed Carbohydrate Based Gelators and Their Applications. Gels 2021; 7:24. [PMID: 33652820 PMCID: PMC8006029 DOI: 10.3390/gels7010024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate based low molecular weight gelators have been an intense subject of study over the past decade. The self-assembling systems built from natural products have high significance as biocompatible materials and renewable resources. The versatile structures available from naturally existing monosaccharides have enriched the molecular libraries that can be used for the construction of gelators. The bottom-up strategy in designing low molecular weight gelators (LMWGs) for a variety of applications has been adopted by many researchers. Rational design, along with some serendipitous discoveries, has resulted in multiple classes of molecular gelators. This review covers the literature from 2017-2020 on monosaccharide based gelators, including common hexoses, pentoses, along with some disaccharides and their derivatives. The structure-based design and structure to gelation property relationships are reviewed first, followed by stimuli-responsive gelators. The last section focuses on the applications of the sugar based gelators, including their utilization in environmental remediation, ion sensing, catalysis, drug delivery and 3D-printing. We will also review the available LMWGs and their structure correlations to the desired properties for different applications. This review aims at elucidating the design principles and structural features that are pertinent to various applications and hope to provide certain guidelines for researchers that are working at the interface of chemistry, biochemistry, and materials science.
Collapse
Affiliation(s)
| | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (J.M.); (J.B.); (K.B.)
| |
Collapse
|
3
|
Kumar S, Wu L, Sharma N, Ayushee, Kaushik K, Grishina M, Chhikara BS, Poonam, Potemkin V, Rathi B. Theoretical and experimental studies of an oseltamivir-triazole-based thermoresponsive organogel. RSC Adv 2019; 9:21031-21041. [PMID: 35515532 PMCID: PMC9065751 DOI: 10.1039/c9ra02463h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 02/01/2023] Open
Abstract
Low-molecular weight organic gelators have been of significant interest in recent years because of their interesting properties and potential applications in sensing technology, biomedicine and drug delivery. Herein, the synthesis, characterization and gelation properties of new oseltamivir conjugates are reported. The oseltamivir-triazole conjugate 1 was synthesized via a click-reaction in a 75% yield. The key features of this conjugate include the presence of amide, flexible ester linkages and a triazole scaffold linking a hydrophobic alkyl chain. The conjugate 1, possessing a long alkyl chain, showed gelation properties in various apolar organic solvents. This gelation behavior was not observed in the case of the deesterified conjugate 2; this indicated the necessity of the alkyl chain for gelation. The gelator 1 showed thermoreversible gelation properties in a range of linear alkane solvents (from n-pentane to n-dodecane). A scanning electron microscopic study suggests that the gelator 1 exists as cross-linked structures, which are self-aggregated in the range of submicrometers, as supported by extensive 1H-NMR studies. The rheological parameters supported the occurrence of a soft gelation process, and the gel formed in n-decane was found to be stiffer than that formed in n-hexane. Computational studies suggested that the gelation behavior was indeed due to micelle formation and dependent on the lipophilicity of solvents.
Collapse
Affiliation(s)
- Sumit Kumar
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi Delhi 110007 India
- Department of Chemistry, Miranda House, University of Delhi Delhi 110007 India
| | - Lidong Wu
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences Beijing 100141 China
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi Delhi 110007 India
| | - Ayushee
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi Delhi 110007 India
| | - Kumar Kaushik
- Fire Chemistry Group, Centre for Fire, Explosives & Environment Safety Delhi-110054 India
| | - Maria Grishina
- South Ural State University, Laboratory of Computational Modeling of Drugs 454080 Russia
| | - Bhupendra S Chhikara
- Department of Chemistry, Aditi Mahavidyalaya, University of Delhi Bawana Delhi-110039 India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi Delhi 110007 India
| | - Vladimir Potemkin
- South Ural State University, Laboratory of Computational Modeling of Drugs 454080 Russia
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi Delhi 110007 India
| |
Collapse
|
4
|
Nuthanakanti A. Cytidine and ribothymidine nucleolipids synthesis, organogelation, and selective anion and metal ion responsiveness. NEW J CHEM 2019. [DOI: 10.1039/c9nj03276b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleolipids of 2′,3′-O-diacylatedribothymidine supports the organogelation by utilizing inherent self-base pairing and solvent mediated bifurcated H-bonding and hydrophobic effect. These organogels exhibits unusual Hg2+ mediated base pairing.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| |
Collapse
|
5
|
Marzag H, Zerhouni M, Tachallait H, Demange L, Robert G, Bougrin K, Auberger P, Benhida R. Modular synthesis of new C-aryl-nucleosides and their anti-CML activity. Bioorg Med Chem Lett 2018; 28:1931-1936. [PMID: 29655981 DOI: 10.1016/j.bmcl.2018.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
The C-aryl-ribosyles are of utmost interest for the development of antiviral and anticancer agents. Even if several synthetic pathways have been disclosed for the preparation of these nucleosides, a direct, few steps and modular approaches are still lacking. In line with our previous efforts, we report herein a one step - eco-friendly β-ribosylation of aryles and heteroaryles through a direct Friedel-Craft ribosylation mediated by bismuth triflate, Bi(OTf)3. The resulting carbohydrates have been functionalized by cross-coupling reactions, leading to a series of new C-aryl-nucleosides (32 compounds). Among them, we observed that 5d exerts promising anti-proliferative effects against two human Chronic Myeloid Leukemia (CML) cell lines, both sensitive (K562-S) or resistant (K562-R) to imatinib, the "gold standard of care" used in this pathology. Moreover, we demonstrated that 5d kills CML cells by a non-conventional mechanism of cell death.
Collapse
Affiliation(s)
- Hamid Marzag
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Plant Chemistry, Organic and Bioorganic Synthesis Team, URAC23, Faculty of Sciences, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - Marwa Zerhouni
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Hamza Tachallait
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Plant Chemistry, Organic and Bioorganic Synthesis Team, URAC23, Faculty of Sciences, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - Luc Demange
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Département de Chimie, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire & UFR Biomédicale des Saints Pères, 45 rue des Saints Pères, Paris Fr-75006, France
| | - Guillaume Robert
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Khalid Bougrin
- Plant Chemistry, Organic and Bioorganic Synthesis Team, URAC23, Faculty of Sciences, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - Patrick Auberger
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Mohamed VI Polytechnic University, UM6P, 43150 Ben Guerir, Morocco.
| |
Collapse
|
6
|
Basu N, Chakraborty A, Ghosh R. Carbohydrate Derived Organogelators and the Corresponding Functional Gels Developed in Recent Time. Gels 2018; 4:E52. [PMID: 30674828 PMCID: PMC6209255 DOI: 10.3390/gels4020052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023] Open
Abstract
Owing to their multifarious applicability, studies of molecular and supramolecular gelators and their corresponding gels have gained momentum, particularly in the last two decades. Hydrophobic⁻hydrophilic balance, different solvent parameters, gelator⁻gelator and gelator⁻solvent interactions, including different noncovalent intermolecular interactive forces like H-bonding, ionic interactions, π⁻π interactions, van der Waals interactions, etc., cause the supramolecular gel assembly of micro and nano scales with different types of morphologies, depending on the gelator, solvent, and condition of gelation. These gel structures can be utilized for making template inorganic superstructures for potential application in separation, generation of nanocomposite materials, and other applications like self-healing, controlled drug encapsulation, release and delivery, as structuring agents, oil-spill recovery, for preparation of semi-conducting fabrics, and in many other fields. Sugars, being easily available, inexpensive, and nontoxic natural resources with multi functionality and well-defined chirality are attractive starting materials for the preparation of sugar-based gelators. This review will focus on compilation of sugar derived organogelators and the corresponding gels, along with the potential applications that have been developed and published recently between January 2015 and March 2018.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry, Nabagram Hiralal Paul College, Konnagar, West Bengal 712246, India.
| | - Arijit Chakraborty
- Department of Chemistry, Acharya B. N. Seal College, Cooch Behar, West Bengal 736101, India.
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
7
|
Hamoud A, Barthélémy P, Desvergnes V. An organocatalyzed Stetter reaction as a bio-inspired tool for the synthesis of nucleic acid-based bioconjugates. Org Biomol Chem 2018; 16:1760-1769. [PMID: 29464261 DOI: 10.1039/c8ob00192h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An N-Heterocyclic Carbene (NHC) catalyzed biomimetic Stetter reaction was applied for the first time as a bioconjugation reaction to sensitive nucleoside-type biomolecules to provide original pyrrole linked nucleolipids. A versatile approach allowed the functionalization of thymidine at the three reactive positions (O-5', O-3' and N-3) providing a structural diversity oriented synthesis. This strategy was applied to the synthesis of an original glyconucleolipid amphiphile in the hope that the pyrrole aromatic moiety would induce additional self-assembling properties.
Collapse
Affiliation(s)
- Aladin Hamoud
- University of Bordeaux, UMR 5320 CNRS, INSERM U1212, ChemBioPharm Team, 146 rue Leo Saignat, UFR Pharmacie, 3ième tranche, 4ième étage, 33076 Bordeaux Cedex, France.
| | | | | |
Collapse
|
8
|
Baillet J, Desvergnes V, Hamoud A, Latxague L, Barthélémy P. Lipid and Nucleic Acid Chemistries: Combining the Best of Both Worlds to Construct Advanced Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705078. [PMID: 29341288 DOI: 10.1002/adma.201705078] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Hybrid synthetic amphiphilic biomolecules are emerging as promising supramolecular materials for biomedical and technological applications. Herein, recent progress in the field of nucleic acid based lipids is highlighted with an emphasis on their molecular design, synthesis, supramolecular properties, physicochemical behaviors, and applications in the field of health science and technology. In the first section, the design and the study of nucleolipids are in focus and then the glyconucleolipid family is discussed. In the last section, recent contributions of responsive materials involving nucleolipids and their use as smart drug delivery systems are discussed. The supramolecular materials generated by nucleic acid based lipids open new challenges for biomedical applications, including the fields of medicinal chemistry, biosensors, biomaterials for tissue engineering, drug delivery, and the decontamination of nanoparticles.
Collapse
Affiliation(s)
- Julie Baillet
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| | - Valérie Desvergnes
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| | - Aladin Hamoud
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| | - Laurent Latxague
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| | - Philippe Barthélémy
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| |
Collapse
|
9
|
Low molecular weight hydrogels derived from urea based-bolaamphiphiles as new injectable biomaterials. Biomaterials 2017; 145:72-80. [DOI: 10.1016/j.biomaterials.2017.08.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/18/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
|
10
|
Okafor IS, Wang G. Synthesis and gelation property of a series of disaccharide triazole derivatives. Carbohydr Res 2017; 451:81-94. [DOI: 10.1016/j.carres.2017.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
|
11
|
Zhou J, Li J, Du X, Xu B. Supramolecular biofunctional materials. Biomaterials 2017; 129:1-27. [PMID: 28319779 PMCID: PMC5470592 DOI: 10.1016/j.biomaterials.2017.03.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/27/2022]
Abstract
This review discusses supramolecular biofunctional materials, a novel class of biomaterials formed by small molecules that are held together via noncovalent interactions. The complexity of biology and relevant biomedical problems not only inspire, but also demand effective molecular design for functional materials. Supramolecular biofunctional materials offer (almost) unlimited possibilities and opportunities to address challenging biomedical problems. Rational molecular design of supramolecular biofunctional materials exploit powerful and versatile noncovalent interactions, which offer many advantages, such as responsiveness, reversibility, tunability, biomimicry, modularity, predictability, and, most importantly, adaptiveness. In this review, besides elaborating on the merits of supramolecular biofunctional materials (mainly in the form of hydrogels and/or nanoscale assemblies) resulting from noncovalent interactions, we also discuss the advantages of small peptides as a prevalent molecular platform to generate a wide range of supramolecular biofunctional materials for the applications in drug delivery, tissue engineering, immunology, cancer therapy, fluorescent imaging, and stem cell regulation. This review aims to provide a brief synopsis of recent achievements at the intersection of supramolecular chemistry and biomedical science in hope of contributing to the multidisciplinary research on supramolecular biofunctional materials for a wide range of applications. We envision that supramolecular biofunctional materials will contribute to the development of new therapies that will ultimately lead to a paradigm shift for developing next generation biomaterials for medicine.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jie Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|