1
|
Pyszka I, Jędrzejewska B. Highly Efficient Photoinitiation Systems Based on Dibenzo[a,c]phenazine Sensitivity to Visible Light for Dentistry. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2597. [PMID: 38893862 PMCID: PMC11173425 DOI: 10.3390/ma17112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024]
Abstract
In this work, photoinitiation systems based on dibenzo[a,c]phenazine sensitivity to visible light were designed for their potential application in dentistry. Modification of the structure of dibenzo[a,c]phenazine consisted of introducing electron-donating and electron-withdrawing substituents and heavy atoms into position 11. The synthesized compounds are able to absorb radiation emitted by dental lamps during photoinitiation of the polymerization process. In the presence of acrylates, dibenzo[a,c]phenazines show excellent photoinitiating abilities in systems containing an electron donor or a hydrogen-atom donor as a second component. The developed systems initiate the polymerization process comparable to a commercial photoinitiator, i.e., camphorquinone. Moreover, the performed studies showed a significant shortening of the polymerization time and a reduction in the amount of light absorber. This indicates that polymeric materials are obtained at a similar rate despite a significant reduction in the concentration of the newly developed two-component photoinitiating systems.
Collapse
Affiliation(s)
- Ilona Pyszka
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Beata Jędrzejewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
2
|
Zhao F, Kong J, Zhang W, Kuang Z, Zhou M. Triplet Excited-State Dynamics in Benzothiadiazole-Based Thermally Activated Delayed Fluorescence Compound. J Phys Chem Lett 2024:2885-2892. [PMID: 38447087 DOI: 10.1021/acs.jpclett.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The "hot exciton" thermally activated delayed fluorescence (TADF) materials have attracted considerable research interest for their utilization of high-lying triplet excitons. In this work, we reported the mechanism of photoluminescence by revealing the spectral evolution from singlet to triplet states in "hot exciton" TADF molecules by transient absorption (TA) spectra and triplet sensitization experiments. The internal conversion and intersystem crossing are much faster than reverse intersystem crossing (RISC), so that high-lying triplet states (Tn) are difficult to accumulate to be observed in the transient absorption spectra. In contrast, the emergence of delayed fluorescence in time-resolved emission spectra demonstrates the existence of a high-lying RISC process (hRISC) from Tn to S1. Triplet sensitization experiments successfully identified the spectral features of the T1 state in the TA spectra. This work sheds light on critical factors for the systematic design of these materials to achieve a high emission quantum yield.
Collapse
Affiliation(s)
- Fangming Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China
| | - Zhuoran Kuang
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
3
|
Attwood M, Xu X, Newns M, Meng Z, Ingle RA, Wu H, Chen X, Xu W, Ng W, Abiola TT, Stavros VG, Oxborrow M. N-Heteroacenes as an Organic Gain Medium for Room-Temperature Masers. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4498-4509. [PMID: 37332679 PMCID: PMC10268955 DOI: 10.1021/acs.chemmater.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Indexed: 06/20/2023]
Abstract
The development of future quantum devices such as the maser, i.e., the microwave analog of the laser, could be well-served by the exploration of chemically tunable organic materials. Current iterations of room-temperature organic solid-state masers are composed of an inert host material that is doped with a spin-active molecule. In this work, we systematically modulated the structure of three nitrogen-substituted tetracene derivatives to augment their photoexcited spin dynamics and then evaluated their potential as novel maser gain media by optical, computational, and electronic paramagnetic resonance (EPR) spectroscopy. To facilitate these investigations, we adopted an organic glass former, 1,3,5-tri(1-naphthyl)benzene to act as a universal host. These chemical modifications impacted the rates of intersystem crossing, triplet spin polarization, triplet decay, and spin-lattice relaxation, leading to significant consequences on the conditions required to surpass the maser threshold.
Collapse
Affiliation(s)
- Max Attwood
- Department
of Materials, Imperial College London, South Kensington Campus, Exhibition
Road, London SW7 2AZ, U.K.
| | - Xiaotian Xu
- Department
of Materials, Imperial College London, South Kensington Campus, Exhibition
Road, London SW7 2AZ, U.K.
| | - Michael Newns
- Department
of Materials, Imperial College London, South Kensington Campus, Exhibition
Road, London SW7 2AZ, U.K.
| | - Zhu Meng
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K.
| | - Rebecca A. Ingle
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Hao Wu
- Center
for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic
Quantum Architecture and Measurements, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xi Chen
- Department
of Materials, Imperial College London, South Kensington Campus, Exhibition
Road, London SW7 2AZ, U.K.
- Department
of Computer Science, University of Southern
California, Los Angeles, California 90089, United States
| | - Weidong Xu
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K.
| | - Wern Ng
- Department
of Materials, Imperial College London, South Kensington Campus, Exhibition
Road, London SW7 2AZ, U.K.
| | - Temitope T. Abiola
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Canada
| | | | - Mark Oxborrow
- Department
of Materials, Imperial College London, South Kensington Campus, Exhibition
Road, London SW7 2AZ, U.K.
| |
Collapse
|
4
|
Wang T, Liu M, Mao J, Liang Y, Wang L, Liu D, Wang T, Hu W. Recent advances in long-persistent luminescence materials based on host–guest architecture. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Che Y, Qi X, Qu W, Shi B, Lin Q, Yao H, Zhang Y, Wei T. Synthetic strategies of phenazine derivatives: a review. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu‐Xin Che
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Xiao‐Ni Qi
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Wen‐Juan Qu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Bing‐Bing Shi
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Qi Lin
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Hong Yao
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| |
Collapse
|
6
|
Prompt and Long-Lived Anti-Kasha Emission from Organic Dyes. Molecules 2021; 26:molecules26226999. [PMID: 34834093 PMCID: PMC8623836 DOI: 10.3390/molecules26226999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Anti-Kasha behavior has been the subject of intense debate in the last few years, as demonstrated by the high number of papers appearing in the literature on this topic, dealing with both mechanistic and applicative aspects of this phenomenon. Examples of anomalous emitters reported in the last 10 years are collected in the present review, which is focused on strictly anti-Kasha organic molecules displaying radiative deactivation from Sn and/or Tn, with n greater than 1.
Collapse
|
7
|
Pyszka I, Kucybała Z, Jędrzejewska B. Effective Singlet Oxygen Sensitizers Based on the Phenazine Skeleton as Efficient Light Absorbers in Dye Photoinitiating Systems for Radical Polymerization of Acrylates. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3085. [PMID: 34200054 PMCID: PMC8200244 DOI: 10.3390/ma14113085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
A series of dyes based on the phenazine skeleton were synthesized. They differed in the number of conjugated double bonds, the arrangement of aromatic rings (linear and/or angular system), as well as the number and position of nitrogen atoms in the molecule. These compounds were investigated as potential singlet oxygen sensitizers and visible light absorbers in dye photoinitiating systems for radical polymerization. The quantum yield of the singlet oxygen formation was determined by the comparative method based on the 1H NMR spectra recorded for the tested dyes in the presence of 2,3-diphenyl-p-dioxene before and after irradiation. The quantum yield of the triplet state formation was estimated based on the transient absorption spectra recorded using the nanosecond flash photolysis technique. The effectiveness of the dye photoinitiating system was characterized by the initial rate of trimethylolpropane triacrylate (TMPTA) polymerization. In the investigated photoinitiating systems, the sensitizer was an electron acceptor, whereas the co-initiator was an electron donor. The effectiveness of TMPTA photoinitiated polymerization clearly depended on the arrangement of aromatic rings and the number of nitrogen atoms in the modified phenazine structure as well as the quantum yield of the triplet state formation of the photosensitizer in the visible light region.
Collapse
Affiliation(s)
- Ilona Pyszka
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | | | - Beata Jędrzejewska
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
8
|
Thom KA, Förster T, Weingart O, Goto S, Takeda Y, Minakata S, Gilch P. The Photophysics of Dibenzo[
a,j
]phenazine. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kristoffer A. Thom
- Institut für Physikalische Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
| | - Tom Förster
- Institut für Physikalische Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie Heinrich-Heine-Universität Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
| | - Shimpei Goto
- Department of Applied Chemistry, Graduate School of Engineering Osaka University, Yamadaoka 2–1 Suita Osaka 565-0871 Japan
| | - Youhei Takeda
- Department of Applied Chemistry, Graduate School of Engineering Osaka University, Yamadaoka 2–1 Suita Osaka 565-0871 Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering Osaka University, Yamadaoka 2–1 Suita Osaka 565-0871 Japan
| | - Peter Gilch
- Institut für Physikalische Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
| |
Collapse
|
9
|
Recent progress on pure organic room temperature phosphorescence materials based on host-guest interactions. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Xiao L, Fu H. Enhanced Room-Temperature Phosphorescence through Intermolecular Halogen/Hydrogen Bonding. Chemistry 2018; 25:714-723. [PMID: 30070738 DOI: 10.1002/chem.201802819] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Indexed: 12/31/2022]
Abstract
Room-temperature phosphorescence (RTP) materials with high efficiency have attracted much attention because they have unique characteristics that cannot be realized in conventional fluorescent materials. Unfortunately, efficient RTP in metal-free organic materials is very rare and it has traditionally been considered as the feature to divide purely organic compounds from organometallic and inorganic compounds. There has been increasing research interest in the design and preparation of metal-free organic RTP materials in recent years. It has been reported that intermolecular interactions make a big difference to the photophysical behavior of organic molecules. In this regard, herein, the parameters that affect RTP efficiency are discussed, and a brief review of recent intermolecular halogen-/hydrogen-bonding strategies for efficient RTP in metal-free organic materials are provided. The opportunities and challenges are finally elaborated in the hope of guiding promising directions for the design and application of RTP materials.
Collapse
Affiliation(s)
- Lu Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hongbing Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Collaborative Innovation, Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| |
Collapse
|