1
|
Abbasi S, Reza Naimi‐Jamal M, Javanshir S, Heydari A. Selective Oxidation of Alcohols through Fe 3 O 4 @SiO 2 /K 2 CO 3 -Glycerin Deep Eutectic Solvent as a Heterogeneous Catalytic System. ChemistryOpen 2022; 11:e202200172. [PMID: 36457168 PMCID: PMC9716035 DOI: 10.1002/open.202200172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/15/2022] [Indexed: 12/03/2022] Open
Abstract
K2 CO3 /Glycerin as a deep eutectic solvent (DES) was anchored covalently onto functionalized magnetic nanoparticles and showed a significant activity towards the oxidation of various alcohols under mild conditions with a short reaction time and good to high yield. A combination of the magnetic nanoparticles and deep eutectic solvent offers a novel, green, reusable catalyst with easy separation. Also, the catalyst structure was well characterized using techniques such as FT-IR spectroscopy, XRD, SEM, TGA, BET, VSM, TEM, and energy-dispersive X-ray spectroscopy (EDS).
Collapse
Affiliation(s)
- Sepideh Abbasi
- Research Laboratory of Green Organic Synthesis & PolymersDepartment of ChemistryIran University of Science and Technology (IUST)16846-13114TehranIran
| | - Mohammad Reza Naimi‐Jamal
- Research Laboratory of Green Organic Synthesis & PolymersDepartment of ChemistryIran University of Science and Technology (IUST)16846-13114TehranIran
| | - Shahrzad Javanshir
- Heterocyclic Chemistry Research LaboratoryChemistry DepartmentIran University of Science and Technology16846-13114TehranIran
| | - Akbar Heydari
- Chemistry DepartmentTarbiat Modares University14155-4838TehranIran
| |
Collapse
|
2
|
Sabet-Sarvestani H, Bolourian S, Eshghi H, Hosseini F, Hosseini H. Nitronium salts as mild and inexpensive oxidizing reagents toward designing efficient strategies in organic syntheses; A mechanistic investigation based on the DFT insights. J Mol Graph Model 2022; 116:108253. [PMID: 35752083 DOI: 10.1016/j.jmgm.2022.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
Today, introducing and evaluating the performance of novel reagents are an undeniable part of designing a successful synthetic strategy. Herein, we study the efficiency and mechanism of recently synthesized nitronium salts (e.g., NO2FSO3, NO2CF3SO3, NO2HS2O7, NO2BF4, NO2PF6, and NO2HSO4) in the oxidation reaction of ethanol to acetic acid, as a model of the primary alcohol transformations to linear carboxylic acid. An aldehyde molecule is the first produced species in this reaction which is converted to the acetic acid molecule in the presence of in situ-produced nitric acid. Concerning the proposed mechanism, among the studied nitronium salts, two different behaviors can be observed in the transition state of the step in which the aldehyde molecule is formed. The calculated barrier energies of this step have been scrutinized by powerful descriptors such as Quantum Theory of Atoms in Molecules (QTAIM), Natural Bond Orbital (NBO), Electrostatic Potential (ESP) surfaces, and Activation Strain Model (ASM). The outcomes of the studied descriptors illustrate that nitronium salts have different performances in progressing the formation of the aldehyde molecule. Indeed, the likeness of the transition state of this step to the products for NO2FSO3, NO2CF3SO3, and NO2HS2O7 species is more significant than the others. Accordingly, these reagents have more potential to apply as oxidizing agents in the primary alcohol transformations to linear carboxylic acid.
Collapse
Affiliation(s)
- Hossein Sabet-Sarvestani
- Department of Food Additives, Food Science and Technology Research Institute, Research Center for Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| | - Shadi Bolourian
- Department of Food Additives, Food Science and Technology Research Institute, Research Center for Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fereshteh Hosseini
- Department of Food Additives, Food Science and Technology Research Institute, Research Center for Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hamed Hosseini
- Department of Food Additives, Food Science and Technology Research Institute, Research Center for Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
3
|
Maji A, Gupta S, Maji M, Kundu S. Well-Defined Phosphine-Free Manganese(II)-Complex-Catalyzed Synthesis of Quinolines, Pyrroles, and Pyridines. J Org Chem 2022; 87:8351-8367. [PMID: 35726206 DOI: 10.1021/acs.joc.2c00167] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we report a simple, phosphine-free, and inexpensive catalytic system based on a manganese(II) complex for synthesizing different important N-heterocycles such as quinolines, pyrroles, and pyridines from amino alcohols and ketones. Several control experiments, kinetic studies, and DFT calculations were carried out to support the plausible reaction mechanism. We also detected two potential intermediates in the catalytic cycle using ESI-MS analysis. Based on these studies, a metal-ligand cooperative mechanism was proposed.
Collapse
Affiliation(s)
- Ankur Maji
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Shivangi Gupta
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Milan Maji
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
4
|
Sharma DM, Gouda C, Gonnade RG, Punji B. Room temperature Z-selective hydrogenation of alkynes by hemilabile and non-innocent (NNN)Co(ii) catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Room temperature chemo- and stereoselective hydrogenation of alkynes is described using a well-defined and phosphine-free hemilabile cobalt catalyst.
Collapse
Affiliation(s)
- Dipesh M. Sharma
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
| | - Chandrakant Gouda
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
- Centre for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune – 411 008, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
| |
Collapse
|
5
|
|
6
|
Zohrevandi M, Mozafari R, Ghadermazi M. A nickel nanoparticle engineered CoFe 2O 4/SiO 2-NH 2@carboxamide composite as a novel scaffold for the oxidation of sulfides and oxidative coupling of thiols. RSC Adv 2021; 11:14717-14729. [PMID: 35424007 PMCID: PMC8697801 DOI: 10.1039/d1ra01592c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/04/2021] [Indexed: 11/21/2022] Open
Abstract
The purpose of this work was to prepare a new Ni-carboxamide complex supported on CoFe2O4 nanoparticles (CoFe2O4/SiO2-NH2@carboxamide-Ni). The carboxamide host material unit generated cavities that stabilized the nickel nanoparticles effectively and prevented the aggregation and separation of these particles on the surface. This compound was appropriately characterized using FT-IR spectroscopy, FE-SEM, ICP-OES, EDX, XRD, TGA analysis, VSM, and X-ray atomic mapping. The catalytic oxidation of sulfides and oxidative coupling of thiols in the presence of the designed catalyst was explored as a highly selective catalyst using hydrogen peroxide (H2O2) as a green oxidant. The easy separation, simple workup, excellent stability of the nanocatalyst, short reaction times, non-explosive materials as well as appropriate yields of the products are some outstanding advantages of this protocol.
Collapse
Affiliation(s)
- Mina Zohrevandi
- Department of Chemistry, University of Kurdistan P. O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| | - Roya Mozafari
- Department of Chemistry, University of Kurdistan P. O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| | - Mohammad Ghadermazi
- Department of Chemistry, University of Kurdistan P. O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| |
Collapse
|
7
|
Mandrekar KS, Tilve SG. Molecular iodine mediated oxidative cleavage of the C–N bond of aryl and heteroaryl (dimethylamino)methyl groups into aldehydes. NEW J CHEM 2021. [DOI: 10.1039/d0nj05832g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient iodine mediated conversion of aryl or heteroaryl (dimethylamino)methyl compunds to aryl or heteroaryl aldehydes is achieved via cleavage of C-N bond.
Collapse
|
8
|
Panza N, Biase A, Rizzato S, Gallo E, Tseberlidis G, Caselli A. Catalytic Selective Oxidation of Primary and Secondary Alcohols Using Nonheme [Iron(III)(Pyridine‐Containing Ligand)] Complexes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicola Panza
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| | - Armando Biase
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| | - Silvia Rizzato
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| | - Emma Gallo
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| | - Giorgio Tseberlidis
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
- Department of Materials Science and Solar Energy Research Center (MIB‐SOLAR) University of Milano‐Bicocca Via Cozzi 55 20125 Milano Italy
| | - Alessandro Caselli
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| |
Collapse
|
9
|
Ros D, Gianferrara T, Crotti C, Farnetti E. Iron-Catalyzed Oxidation of 1-Phenylethanol and Glycerol With Hydrogen Peroxide in Water Medium: Effect of the Nitrogen Ligand on Catalytic Activity and Selectivity. Front Chem 2020; 8:810. [PMID: 33195031 PMCID: PMC7581906 DOI: 10.3389/fchem.2020.00810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022] Open
Abstract
The iron(II) complexes [Fe(bpy)3](OTf)2 (bpy = 2,2'-bipyridine; OTf = CF3SO3) (1) and [Fe(bpydeg)3](OTf)2 (bpydeg = N4,N4-bis(2-(2-methoxyethoxy)ethyl) [2,2'-bipyridine]-4,4'-dicarboxamide) (2), the latter being a newly synthesized ligand, were employed as catalyst precursors for the oxidation of 1-phenylethanol with hydrogen peroxide in water, using either microwave or conventional heating. With the same oxidant and medium the oxidation of glycerol was also explored in the presence of 1 and 2, as well as of two similar iron(II) complexes bearing tridentate ligands, i.e., [Fe(terpy)2](OTf)2 (terpy = 2, 6-di(2-pyridyl)pyridine) (3) and [Fe(bpa)2](OTf)2 (bpa = bis(2-pyridinylmethyl)amine) (4): in most reactions the major product formed was formic acid, although with careful tuning of the experimental conditions significant amounts of dihydroxyacetone were obtained. Addition of heterocyclic amino acids (e.g., picolinic acid) increased the reaction yields of most catalytic reactions. The effect of such additives on the evolution of the catalyst precursors was studied by spectroscopic (NMR, UV-visible) and ESI-MS techniques.
Collapse
Affiliation(s)
- Dimitri Ros
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste, Italy
| | - Teresa Gianferrara
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste, Italy
| | - Corrado Crotti
- Unità Operativa di Supporto di Trieste, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Erica Farnetti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste, Italy
- *Correspondence: Erica Farnetti
| |
Collapse
|
10
|
Zhu L, Guo H, Feng X, Yamamoto Y, Bao M. Copper-Catalyzed One-Pot Synthesis of 1,3-Enynes from 2-Chloro- N-(quinolin-8-yl)acetamides and Terminal Alkynes. J Org Chem 2020; 85:8740-8748. [PMID: 32486641 DOI: 10.1021/acs.joc.0c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method for the chemo-, regio-, and stereoselective one-pot synthesis of 1,3-enynes is described. The reaction of 2-chloro-N-(quinolin-8-yl)acetamides with terminal alkynes proceeds smoothly in the presence of a copper catalyst at room temperature to produce (E)-1,3-enynes in satisfactory to excellent yields. The mechanism study reveals that the cross-dimerization of internal alkynes generated in situ with terminal alkynes proceeds via allene intermediates. The directing group 8-aminoquinoline plays a key role in the current selective synthesis of (E)-1,3-enynes.
Collapse
Affiliation(s)
- Lifan Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Hongyu Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.,Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
11
|
Hydrogen Peroxide as a Green Oxidant for the Selective Catalytic Oxidation of Benzylic and Heterocyclic Alcohols in Different Media: An Overview. CHEMISTRY 2020. [DOI: 10.3390/chemistry2010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Among a plethora of known and established oxidant in organic chemistry, hydrogen peroxide stands in a special position. It is commercially and inexpensively available, highly effective, selective, and more importantly it is compatible with current environmental concerns, dictated by principles of green chemistry. Several chemicals or their intermediates that are important in our daily life such as pharmaceuticals, flavors, fragrances, etc. are products of oxidation of alcohols. In this review, we introduce hydrogen peroxide as an effective, selective, green and privileged oxidant for the catalyzed oxidation of primary and secondary benzylic and heterocyclic alcohols to corresponding carbonyl compounds in different media such as aqueous media, under solvent-free conditions, various organic solvent, and dual-phase system.
Collapse
|
12
|
Farnetti E, Crotti C, Zangrando E. Iron complexes with polydentate phosphines as unusual catalysts for alcohol oxidation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Kazi I, Guha S, Sekar G. Halogen Bond-Assisted Electron-Catalyzed Atom Economic Iodination of Heteroarenes at Room Temperature. J Org Chem 2019; 84:6642-6654. [DOI: 10.1021/acs.joc.9b00174] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Imran Kazi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Somraj Guha
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
14
|
Affiliation(s)
- James D. Grayson
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, U.K
| | | |
Collapse
|
15
|
Jana S, Thomas J, Sen Gupta S. Catalytic oxidation of alcohols using Fe-bTAML and NaClO: Comparing the reactivity of Fe(V)O and Fe(IV)O intermediates. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Microwave-assisted green oxidation of alcohols with hydrogen peroxide catalyzed by iron complexes with nitrogen ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Golchin Hosseini H, Rostamnia S. Post-synthetically modified SBA-15 with NH2-coordinately immobilized iron-oxine: SBA-15/NH2-FeQ3 as a Fenton-like hybrid catalyst for the selective oxidation of organic sulfides. NEW J CHEM 2018. [DOI: 10.1039/c7nj02742g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report the synthesis and catalysis of SBA-15 grafted iron-oxine. SBA-15/NH2-FeQ3 showed efficient catalytic activity in sulfide oxidation.
Collapse
Affiliation(s)
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG)
- Department of Chemistry
- University of Maragheh
- Maragheh
- Iran
| |
Collapse
|
18
|
Affiliation(s)
- Eike B. Bauer
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard St. Louis, MO 63121 USA
| |
Collapse
|
19
|
Li Q, Zhang L, Wang X, Xu G, Chen Y, Dai L. Color conversion of the magnetically separable Al/Fe oxide RNGO in the selective oxidation of benzyl alcohol induced the observation of its morphology change. RSC Adv 2017. [DOI: 10.1039/c7ra03527f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The morphology changed in accordance with the catalytic performance through the observation of color variation during the lifetime test: with a chaotic layout and a comparable inferior catalytic activity initially, while a waffle or pastry state and a relatively superior activity in the prime time performance.
Collapse
Affiliation(s)
- Qichen Li
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Lingling Zhang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Gang Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yingqi Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|