1
|
Single-Molecule Surface-Enhanced Raman Spectroscopy. SENSORS 2022; 22:s22134889. [PMID: 35808385 PMCID: PMC9269420 DOI: 10.3390/s22134889] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022]
Abstract
Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) has the potential to detect single molecules in a non-invasive, label-free manner with high-throughput. SM-SERS can detect chemical information of single molecules without statistical averaging and has wide application in chemical analysis, nanoelectronics, biochemical sensing, etc. Recently, a series of unprecedented advances have been realized in science and application by SM-SERS, which has attracted the interest of various fields. In this review, we first elucidate the key concepts of SM-SERS, including enhancement factor (EF), spectral fluctuation, and experimental evidence of single-molecule events. Next, we systematically discuss advanced implementations of SM-SERS, including substrates with ultra-high EF and reproducibility, strategies to improve the probability of molecules being localized in hotspots, and nonmetallic and hybrid substrates. Then, several examples for the application of SM-SERS are proposed, including catalysis, nanoelectronics, and sensing. Finally, we summarize the challenges and future of SM-SERS. We hope this literature review will inspire the interest of researchers in more fields.
Collapse
|
2
|
Su M, Wang C, Wang T, Jiang Y, Xu Y, Liu H. Breaking the Affinity Limit with Dual-Phase-Accessible Hotspot for Ultrahigh Raman Scattering of Nonadsorptive Molecules. Anal Chem 2020; 92:6941-6948. [PMID: 32329602 DOI: 10.1021/acs.analchem.9b05727] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For surface-enhanced Raman scattering (SERS) analysis, only analytes that can be absorbed spontaneously onto a noble metal surface can be detected effectively. Therefore, getting nonadsorptive molecules close enough to the surface has always been a key challenge in SERS analysis. Here absorbance measurements show that the liquid-interfacial array (LIA) does not adsorb or enrich benzopyrene (Bap) molecules, which lack effective functional groups that can interact with the noble metal surfaces. But the SERS intensity of 0.1 ppm Bap on the LIA is 10 times larger than that of 10 ppm Bap on traditional solid substrate, i.e., 3 orders of magnitude of enhancement. The LIA overcomes the restriction of affinity between Bap molecules and the metal surface, and the Bap molecules can easily enter nanogaps without steric hindrance. Furthermore, both adsorptive and nonadsorptive molecules were used to observe the SERS enhancement behavior on the LIA platforms. In multiple detection, competitive SERS signal changes could be observed between adsorptive and nonadsorptive molecules or between nonadsorptive and nonadsorptive molecules. A theoretical scheme was profiled for localized surface plasmon resonance (SPR) properties of the LIA. Finite difference-time domain (FDTD) simulation shows that the LIAs have biphasic and accessible asymmetric hotspots, and the electric field enhancement in the CHCl3 (O) phase is approximately four times larger than that of the water (W) phase. In addition, the position and relative strength of the electromagnetic field depend on the spatial position of gold nanoparticles (GNPs) relative to the liquid-liquid interface (LLI), i.e., when the GNP dimer is completely immersed in a certain phase, the electromagnetic field enhancement of the CHCl3 phase is approximately 7 times larger than that of the W phase. We speculate that dual-phase-accessible hotspots and the hydrophobic environment provided by CHCl3 are two important factors contributing to successful detection of four common polycyclic aromatic hydrocarbons (PAHs) with a detection limit of 10 ppb. Finally, the LIA platform successfully realizes simultaneous detection of multiple PAHs in both plant and animal oils with good stability. This study provides a new direction for the development of high-efficiency and practical SERS technology for nonadsorptive molecules.
Collapse
Affiliation(s)
- Mengke Su
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Tengfei Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yifan Jiang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yue Xu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Honglin Liu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai 200050, China
| |
Collapse
|
3
|
Zhang K, Liu Y, Wang Y, Zhao J, Liu B. Direct SERS tracking of a chemical reaction at a single 13 nm gold nanoparticle. Chem Sci 2019; 10:1741-1745. [PMID: 30842839 PMCID: PMC6374737 DOI: 10.1039/c8sc04496a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/02/2018] [Indexed: 11/21/2022] Open
Abstract
Metal nanoparticles (NPs) with decreased sizes are promising catalysts in energy and medicine. Measuring the local reactions and simultaneously acquiring molecular insights at single small NPs, however, remain an experimental challenge. Here we report on surface-enhanced Raman spectroscopic (SERS) tracking of catalytic reactions of single 13 nm gold NPs (GNPs) in situ. We designed spatially isolated (>1.5 μm of inter-dimer space) GNP dimers, each of which consisted of two GNPs with sizes of ∼200 and ∼13 nm, respectively. This design integrates the SERS and catalytic activities into a single entity, while eliminating the crosstalk between adjacent particles, which allows us to trace the redox-derived spectral evolution at single 13 nm GNPs for the first time. We also quantified the reaction kinetics of each individual GNP and analyzed the average behavior of multiple GNPs. There is a large variability among different particles, which underscores the significance of single particle analysis.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry , Shanghai Stomatological Hospital , State Key Lab of Molecular Engineering of Polymers, and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , China .
| | - Yujie Liu
- Department of Chemistry , Shanghai Stomatological Hospital , State Key Lab of Molecular Engineering of Polymers, and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , China .
| | - Yuning Wang
- Department of Chemistry , Shanghai Stomatological Hospital , State Key Lab of Molecular Engineering of Polymers, and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , China .
| | - Jingjing Zhao
- Department of Chemistry , Shanghai Stomatological Hospital , State Key Lab of Molecular Engineering of Polymers, and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , China .
| | - Baohong Liu
- Department of Chemistry , Shanghai Stomatological Hospital , State Key Lab of Molecular Engineering of Polymers, and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , China .
| |
Collapse
|
4
|
Zhang K, Liu Y, Zhao J, Liu B. Nanoscale tracking plasmon-driven photocatalysis in individual nanojunctions by vibrational spectroscopy. NANOSCALE 2018; 10:21742-21747. [PMID: 30431050 DOI: 10.1039/c8nr07447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmonic metal nanoparticles (NPs) are promising catalysts in photocatalytic reactions. Understanding the exact role of sites where two particles are approaching (hot spots) is important to achieve higher efficiency of photocatalysis, and promote the development of advanced plasmon-driven photocatalytic systems. Surface-enhanced Raman spectroscopy was employed to probe photocatalytic coupling reactions occurring at individual plasmonic nanojunctions that trap light to nanoscale while serving as nanoreactors. Compared with nanocavities fabricated using the small Ag NPs (70 nm or 82 nm), the 102 nm Ag NP-molecule-Au thin film nanojunction demonstrated enhanced reaction kinetics and catalytic efficiency. On the basis of the experimental results and theoretical modeling, it was concluded that the photochemical reaction dynamics and yields showed direct correlation with the local electric field enhancement at the nanojunction hot spot. The largely enhanced electric field generates increased hot plasmonic electrons, promoting chemical transformations of the adsorbed molecules.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P. R. China.
| | | | | | | |
Collapse
|
5
|
Tran V, Thiel C, Svejda JT, Jalali M, Walkenfort B, Erni D, Schlücker S. Probing the SERS brightness of individual Au nanoparticles, hollow Au/Ag nanoshells, Au nanostars and Au core/Au satellite particles: single-particle experiments and computer simulations. NANOSCALE 2018; 10:21721-21731. [PMID: 30431039 DOI: 10.1039/c8nr06028b] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Different classes of plasmonic nanoparticles functionalized with the non-resonant Raman reporter molecule 4-MBA are tested for their SERS signal brightness at the single-particle level: gold nanoparticles, hollow gold/silver nanoshells, gold nanostars, and gold core/gold satellite particles. Correlative SERS/SEM experiments on a set of particles from each class enable the unambiguous identification of single particles by electron microscopy as well as the characterization of both their elastic (LSPR) and inelastic (SERS) scattering spectra. Experimental observations are compared with predictions from FEM computer simulations based on 3D models derived from representative TEM/SEM images. Single gold nanostars and single gold core/gold satellite particles exhibit a detectable SERS signal under the given experimental conditions, while single gold nanoparticles and single hollow gold/silver nanoshells are not detectable.
Collapse
Affiliation(s)
- Vi Tran
- University Duisburg-Essen, Department of Chemistry, Universitätsstr. 5, 45141 Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
We report a new chemical sensing platform on a single surface-enhanced Raman scattering (SERS) particle. A cabbage-like Au microparticle (CLMP) with high SERS enhancement was applied as an ultrasensitive SERS substrate. A new Raman reporter bis[4,4'-[dithiodiphenyl azo-phenol] (DTDPAP) was synthesized to display multiple fingerprints and high reactivity toward sodium dithionite. The reaction of DTDPAP with sodium dithionite was in situ monitored by SERS on a single CLMP. The DTDPAP fingerprint change is dependent on the sodium dithionite concentration, providing a simple and sensitive method for sodium dithionite profiling.
Collapse
Affiliation(s)
- Ying Ma
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Kittithat Promthaveepong
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Nan Li
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| |
Collapse
|
7
|
Ding SY, You EM, Yi J, Li JF, Tian ZQ. Further expanding versatility of surface-enhanced Raman spectroscopy: from non-traditional SERS-active to SERS-inactive substrates and single shell-isolated nanoparticle. Faraday Discuss 2017; 205:457-468. [DOI: 10.1039/c7fd00144d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
After surface-enhanced Raman spectroscopy (SERS) was initiated over four decades ago, its practical application seems to be far behind the fundamental research that has made tremendous progress. SERS as a highly sensitive technique has not been widely adopted by the materials science and surface science communities or in the market of analytical instruments. In this discussion, we first classify the previous approaches along this direction over the past four decades and divide them into three strategies. Based on our recent theoretical and experimental approaches, we discuss in more detail the third strategy related to shell-isolated nanostructures. It can significantly expand the SERS study on nontraditional SERS-active (i.e. weakly SERS-active) materials (e.g. Pt, Ni, Fe, etc.) and even SERS-inactive materials (e.g. Si and Al2O3). We then focus on a single shell-isolated nanoparticle and how to controllably locate the strong electromagnetic field just at the probe surface of various materials. The use of side illumination at a high incident angle and/or nanocubes can further enhance the Raman signal by one to two orders of magnitude, which could be helpful for quantitative studies for surface science, heterogeneous catalysis, and soft matter science.
Collapse
Affiliation(s)
- Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - En-Ming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|