1
|
Hu S, Thiesbrummel J, Pascual J, Stolterfoht M, Wakamiya A, Snaith HJ. Narrow Bandgap Metal Halide Perovskites for All-Perovskite Tandem Photovoltaics. Chem Rev 2024; 124:4079-4123. [PMID: 38527274 PMCID: PMC11009966 DOI: 10.1021/acs.chemrev.3c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
All-perovskite tandem solar cells are attracting considerable interest in photovoltaics research, owing to their potential to surpass the theoretical efficiency limit of single-junction cells, in a cost-effective sustainable manner. Thanks to the bandgap-bowing effect, mixed tin-lead (Sn-Pb) perovskites possess a close to ideal narrow bandgap for constructing tandem cells, matched with wide-bandgap neat lead-based counterparts. The performance of all-perovskite tandems, however, has yet to reach its efficiency potential. One of the main obstacles that need to be overcome is the─oftentimes─low quality of the mixed Sn-Pb perovskite films, largely caused by the facile oxidation of Sn(II) to Sn(IV), as well as the difficult-to-control film crystallization dynamics. Additional detrimental imperfections are introduced in the perovskite thin film, particularly at its vulnerable surfaces, including the top and bottom interfaces as well as the grain boundaries. Due to these issues, the resultant device performance is distinctly far lower than their theoretically achievable maximum efficiency. Robust modifications and improvements to the surfaces of mixed Sn-Pb perovskite films are therefore critical for the advancement of the field. This Review describes the origins of imperfections in thin films and covers efforts made so far toward reaching a better understanding of mixed Sn-Pb perovskites, in particular with respect to surface modifications that improved the efficiency and stability of the narrow bandgap solar cells. In addition, we also outline the important issues of integrating the narrow bandgap subcells for achieving reliable and efficient all-perovskite double- and multi-junction tandems. Future work should focus on the characterization and visualization of the specific surface defects, as well as tracking their evolution under different external stimuli, guiding in turn the processing for efficient and stable single-junction and tandem solar cell devices.
Collapse
Affiliation(s)
- Shuaifeng Hu
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Jarla Thiesbrummel
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
- Institute
for Physics and Astronomy, University of
Potsdam,14476 Potsdam-Golm, Germany
| | - Jorge Pascual
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Polymat, University of the
Basque Country UPV/EHU, 20018 Donostia-San
Sebastian, Spain
| | - Martin Stolterfoht
- Institute
for Physics and Astronomy, University of
Potsdam,14476 Potsdam-Golm, Germany
- Electronic
Engineering Department, The Chinese University
of Hong Kong, Hong Kong 999077, SAR China
| | - Atsushi Wakamiya
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Henry J. Snaith
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
| |
Collapse
|
2
|
Li M, Zhu Z, Wang Z, Pan W, Cao X, Wu G, Chen R. High-Quality Hybrid Perovskite Thin Films by Post-Treatment Technologies in Photovoltaic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309428. [PMID: 37983565 DOI: 10.1002/adma.202309428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Incredible progress in photovoltaic devices based on hybrid perovskite materials has been made in the past few decades, and a record-certified power conversion efficiency (PCE) of over 26% has been achieved in single-junction perovskite solar cells (PSCs). In the fabrication of high-efficiency PSCs, the postprocessing procedures toward perovskites are essential for designing high-quality perovskite thin films; developing efficient and reliable post-treatment techniques is very important to promote the progress of PSCs. Here, recent post-treatment technological reforms toward perovskite thin films are summarized, and the principal functions of the post-treatment strategies on the design of high-quality perovskite films have been thoroughly analyzed by dividing into two categories in this review: thermal annealing (TA)-related technique and TA-free technique. The latest research progress of the above two types of post-treatment techniques is summarized and discussed, focusing on the optimization of postprocessing conditions, the regulation of perovskite qualities, and the enhancement of device performance. Finally, an outlook of the prospect trends and future challenges for the fabrication of the perovskite layer and the production of highly efficient PSCs is given.
Collapse
Affiliation(s)
- Mingguang Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Zheng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Zhizhi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wenjing Pan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Guangbao Wu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Runfeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
3
|
Abstract
Perovskite solar cells (PSCs) are a promising and fast-growing type of photovoltaic cell due to their low cost and high conversion efficiency. The high efficiency of PSCs is closely related to the quality of the photosensitive layer, and the high-quality light absorbing layer depends on the growth condition of the crystals. In the formation of high-quality crystals, annealing is an indispensable and crucial part, which serves to evaporate the solvent and drive the crystallization of the film. Various annealing methods have different effects on the promotion of the film growth process owing to the way they work. Here, this review will present a discussion of the growth puzzles and quality of perovskite crystals under different driving forces, and then explain the relationship between the annealing driving force and crystal growth. We divided the main current annealing methods into physical and chemical annealing, which has never been summarized before. The main annealing methods currently reported for crystal growth are summarized to visualize the impact of annealing design strategies on photovoltaic performance, while the growth mechanisms of thin films under multiple annealing methods are also discussed. Finally, we suggest future perspectives and trends in the industrial fabrication of PSCs in the future. The review promises industrial manufacturing of annealed PSCs. The review is expected to facilitate the industrial fabrication of PSCs.
Collapse
|
4
|
Jiang S, Bai Y, Ma Z, Jin S, Zou C, Tan Z. Recent Advances of Monolithic
All‐Perovskite
Tandem Solar Cells: From Materials to Devices. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China
| | - Yiming Bai
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China
| | - Zongwen Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Shengli Jin
- Key Laboratory of Solar Energy Utilization & Energy Saving Technology of Zhejiang Province, Zhejiang Energy Group R&D Institute Co., Ltd. Hangzhou Zhejiang 311121 China
| | - Chao Zou
- College of Chemistry and Materials Engineering Wenzhou University, Wenzhou Zhejiang 325027 China
| | - Zhao'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
5
|
Wang H, Zhang C, Huang W, Zou X, Chen Z, Sun S, Zhang L, Li J, Cheng J, Huang S, Gu M, Chen X, Guo X, Gui R, Wang W. Research progress of ABX 3-type lead-free perovskites for optoelectronic applications: materials and devices. Phys Chem Chem Phys 2022; 24:27585-27605. [DOI: 10.1039/d2cp02451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We summarize the development and application of ABX3-type lead-free halide perovskite materials, especially in optoelectronic devices.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Chunqian Zhang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Wenqi Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Xiaoping Zou
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Zhenyu Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Shengliu Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Lixin Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Junming Li
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Jin Cheng
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Shixian Huang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Mingkai Gu
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Xinyao Chen
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Xin Guo
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Ruoxia Gui
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Weimin Wang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| |
Collapse
|
6
|
Chemical Vapor Deposited Mixed Metal Halide Perovskite Thin Films. MATERIALS 2021; 14:ma14133526. [PMID: 34202688 PMCID: PMC8269519 DOI: 10.3390/ma14133526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 01/16/2023]
Abstract
In this article, we used a two-step chemical vapor deposition (CVD) method to synthesize methylammonium lead-tin triiodide perovskite films, MAPb1−xSnxI3, with x varying from 0 to 1. We successfully controlled the concentration of Sn in the perovskite films and used Rutherford backscattering spectroscopy (RBS) to quantify the composition of the precursor films for conversion into perovskite films. According to the RBS results, increasing the SnCl2 source amount in the reaction chamber translate into an increase in Sn concentration in the films. The crystal structure and the optical properties of perovskite films were examined by X-ray diffraction (XRD) and UV-Vis spectrometry. All the perovskite films depicted similar XRD patterns corresponding to a tetragonal structure with I4cm space group despite the precursor films having different crystal structures. The increasing concentration of Sn in the perovskite films linearly decreased the unit volume from about 988.4 Å3 for MAPbI3 to about 983.3 Å3 for MAPb0.39Sn0.61I3, which consequently influenced the optical properties of the films manifested by the decrease in energy bandgap (Eg) and an increase in the disorder in the band gap. The SEM micrographs depicted improvements in the grain size (0.3–1 µm) and surface coverage of the perovskite films compared with the precursor films.
Collapse
|
7
|
Lei Zhang, Wu B, Lin S, Li J. Structures and Properties of Higher-Degree Aggregates of Methylammonium Iodide toward Halide Perovskite Solar Cells. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419110360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Guo X, Chen J, Lian X, Wang Y, Wu G, Chen H. Sn‐Pb Binary Perovskite Films with High Crystalline Quality for High Performance Solar Cells. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuankun Guo
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou Zhejiang 310027 China
| | - Jiehuan Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou Zhejiang 310027 China
| | - Xiaomei Lian
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou Zhejiang 310027 China
| | - Yaqin Wang
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou Zhejiang 310027 China
| | - Gang Wu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou Zhejiang 310027 China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
9
|
Jena AK, Kulkarni A, Miyasaka T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem Rev 2019; 119:3036-3103. [DOI: 10.1021/acs.chemrev.8b00539] [Citation(s) in RCA: 1368] [Impact Index Per Article: 273.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Xiong H, Zabihi F, Wang H, Zhang Q, Eslamian M. Grain engineering by ultrasonic substrate vibration post-treatment of wet perovskite films for annealing-free, high performance, and stable perovskite solar cells. NANOSCALE 2018; 10:8526-8535. [PMID: 29694485 DOI: 10.1039/c8nr00540k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Perovskite solar cells (PSCs) have gained great interest, owing to a fast increase in their power conversion efficiency (PCE), within a few years. However, their wide application and scale-up are hampered due to multiple obstacles, such as chemical instability, which leads to a short lifetime, and their complicated reaction and crystallization, which requires thermal annealing. Here, we address these issues using the ultrasonic substrate vibration post treatment (SVPT) applied on the as-spun perovskite wet films, so as to achieve a uniform, microscale and stable mixed-halide and mixed-cation perovskite layer, (FAPbI3)0.85(MAPbBr3)0.15, without the need for a conventional thermal annealing step. This is achieved by the creation of fluid micromixing and in situ annealing within the solution, caused by the ultrasonic excitation of the wet film. The optoelectronic properties of the perovskite films subjected to the SVPT, including photoemission, carrier lifetime and band gap, are remarkably improved compared to the conventionally annealed films. When incorporated into a planar PSC, a maximum PCE of 18.55% was achieved, compared to 15.17% for the control device, with high reproducibility and no hysteresis, and the device retained 80% of its initial PCE, over a period of 20 days of storage under ambient conditions.
Collapse
Affiliation(s)
- Hao Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | | | | | | | | |
Collapse
|
11
|
Zhou W, Zhou P, Lei X, Fang Z, Zhang M, Liu Q, Chen T, Zeng H, Ding L, Zhu J, Dai S, Yang S. Phase Engineering of Perovskite Materials for High-Efficiency Solar Cells: Rapid Conversion of CH 3NH 3PbI 3 to Phase-Pure CH 3NH 3PbCl 3 via Hydrochloric Acid Vapor Annealing Post-Treatment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1897-1908. [PMID: 29271198 DOI: 10.1021/acsami.7b15008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Organometal halide CH3NH3PbI3 (MAPbI3) has been commonly used as the light absorber layer of perovskite solar cells (PSCs), and, especially, another halide element chlorine (Cl) has been often incorporated to assist the crystallization of perovskite film. However, in most cases, a predominant MAPbI3 phase with trace of Cl- is obtained ultimately and the role of Cl involvement remains unclear. Herein, we develop a low-cost and facile method, named hydrochloric acid vapor annealing (HAVA) post-treatment, and realize a rapid conversion of MAPbI3 to phase-pure MAPbCl3, demonstrating a new concept of phase engineering of perovskite materials toward efficiency enhancement of PSCs for the first time. The average grain size of perovskite film after HAVA post-treatment increases remarkably through an Ostwald ripening process, leading to a denser and smoother perovskite film with reduced trap states and enhanced crystallinity. More importantly, the generation of MAPbCl3 secondary phase via phase engineering is beneficial for improving the carrier mobility with a more balanced carrier transport rate and enlarging the band gap of perovskite film along with optimized energy level alignment. As a result, under the optimized HAVA post-treatment time (2 min), we achieved a significant enhancement of the power conversion efficiency (PCE) of the MAPbI3-based planar heterojunction-PSC device from 14.02 to 17.40% (the highest PCE reaches 18.45%) with greatly suppressed hysteresis of the current-voltage response.
Collapse
Affiliation(s)
- Weiran Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Pengcheng Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Xunyong Lei
- ICQD, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Zhimin Fang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Mengmeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Qing Liu
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Hualing Zeng
- ICQD, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Liming Ding
- National Center for Nanoscience and Technology , Beijing 100190, China
| | - Jun Zhu
- Key Laboratory of Special Display Technology, Ministry of Education, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology , Hefei 230009, China
| | - Songyuan Dai
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University , Beijing 102206, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| |
Collapse
|
12
|
Luo J, Qiu RZ, Yang ZS, Wang YX, Zhang QF. Mechanism and effect of γ-butyrolactone solvent vapor post-annealing on the performance of a mesoporous perovskite solar cell. RSC Adv 2018; 8:724-731. [PMID: 35538998 PMCID: PMC9076929 DOI: 10.1039/c7ra10695e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022] Open
Abstract
In this paper, γ-butyrolactone (GBL) solvent vapor post-annealing (SVPA) on CH3NH3PbI3 thin films is reported, aiming to improve the complete transformation of PbI2 and increase the grain size of the CH3NH3PbI3 crystal, thus boosting the performance of mesoporous CH3NH3PbI3 perovskite solar cells (PSCs). The influence of GBL SVPA on the microstructure of perovskite layers and performance of PSCs was studied. The short circuit current density (J sc) of the devices significantly increased, yielding a high efficiency of 16.58%, which was 27.05% higher than that of thermally annealed films. A model was derived to explain the effect of GBL SVPA on PSCs. The perovskite films prepared by this method present several advantages such as complete transformation of PbI2 to CH3NH3PbI3, high crystallinity, large grain size, and fewer grain boundaries than those prepared without GBL SVPA. This improvement is beneficial for charge dissociation and transport in hybrid photovoltaic devices.
Collapse
Affiliation(s)
- Jun Luo
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute Jingdezhen 333403 China
| | - Ren Zheng Qiu
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute Jingdezhen 333403 China
| | - Zhi Sheng Yang
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute Jingdezhen 333403 China
| | - Yan Xiang Wang
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute Jingdezhen 333403 China
| | - Qi Feng Zhang
- Department of Electrical and Computer Engineering, North Dakota State University Fargo ND 58108 USA
| |
Collapse
|
13
|
Gao F, Li C, Qin L, Zhu L, Huang X, Liu H, Liang L, Hou Y, Lou Z, Hu Y, Teng F. Enhanced performance of tin halide perovskite solar cell by addition of lead thiocyanate. RSC Adv 2018; 8:14025-14030. [PMID: 35539305 PMCID: PMC9079876 DOI: 10.1039/c8ra00809d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/02/2018] [Indexed: 11/21/2022] Open
Abstract
Organic–inorganic hybrid halide perovskites have attracted great attention as a new type of photovoltaic materials. However, lead (Pb) perovskite solar cells (PSCs) would cause environmental pollution in future large-scale applications. Therefore, it is imperative to find environmentally-friendly metals to replace lead. Although tin (Sn) halide perovskites can be regarded as a valid alternative to lead perovskites, their poor stability and lower conversion efficiency hinder the substitution of Sn for Pb. In this work, highly uniform and pinhole-free perovskite films were prepared by the introduction of a small amount of lead thiocyanate in precursor solutions. The CH3NH3SnI3 (MASnI3) films with Pb additive show an absorption edge of 950 nm. Besides, lead ions can depress the LUMO energy level of Sn-based perovskite materials, which is a benefit to an increase in the opencircuit voltages of PSCs. Consequently, the enhanced performance was achieved in the PSCs based on MASnI3 with a fill factor of 66%, open circuit voltage of 0.54 V and maximum power conversion efficiency of 6.03%. The MASnI3-based PSCs with an efficiency of 6.02% was fabricated by incorporating 20 mol% of Pb(SCN)2.![]()
Collapse
|
14
|
Liu Y, Li F, Perumal Veeramalai C, Chen W, Guo T, Wu C, Kim TW. Inkjet-Printed Photodetector Arrays Based on Hybrid Perovskite CH 3NH 3PbI 3 Microwires. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11662-11668. [PMID: 28290194 DOI: 10.1021/acsami.7b01379] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hybrid perovskite CH3NH3PbI3 has attracted extensive research interests in optoelectronic devices in recent years. Herein an inkjet printing method has been employed to deposit a perovskite CH3NH3PbI3 layer. By choosing the proper solvent and controlling the crystal growth rate, hybrid perovskite CH3NH3PbI3 nanowires, microwires, a network, and islands were synthesized by means of inkjet printing. Electrode-gap-electrode lateral-structured photodetectors were fabricated with these different crystals, of which a hybrid perovskite microwire-based photodetector would balance the uniformity and low defects to obtain a switching ratio of 16000%, responsivity of 1.2 A/W, and normalized detectivity of 2.39 × 1012 Jones at a light power density of 0.1 mW/cm2. Furthermore, the hybrid perovskite microwire-based photodetector arrays were fabricated and applied in an imaging sensor, from which the clear mapping of the light source signal was successfully obtained. This work paves the way for the realization of low-cost, solution-processed, and high-performance hybrid perovskite-based photodetector arrays.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Optoelectronic Technology, Fuzhou University , Fuzhou 350002, People's Republic of China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University , Fuzhou 350002, People's Republic of China
| | | | - Wei Chen
- Institute of Optoelectronic Technology, Fuzhou University , Fuzhou 350002, People's Republic of China
| | - Tailiang Guo
- Institute of Optoelectronic Technology, Fuzhou University , Fuzhou 350002, People's Republic of China
| | - Chaoxing Wu
- Department of Electronic Engineering, Hanyang University , Seoul 133-791, Korea
| | - Tae Whan Kim
- Department of Electronic Engineering, Hanyang University , Seoul 133-791, Korea
| |
Collapse
|
15
|
A novel dual function acetic acid vapor-assisted thermal annealing process for high-performance TiO2 nanorods-based perovskite solar cells. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Eperon GE, Leijtens T, Bush KA, Prasanna R, Green T, Wang JTW, McMeekin DP, Volonakis G, Milot RL, May R, Palmstrom A, Slotcavage DJ, Belisle RA, Patel JB, Parrott ES, Sutton RJ, Ma W, Moghadam F, Conings B, Babayigit A, Boyen HG, Bent S, Giustino F, Herz LM, Johnston MB, McGehee MD, Snaith HJ. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 2016; 354:861-865. [DOI: 10.1126/science.aaf9717] [Citation(s) in RCA: 915] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023]
|
17
|
Yang Z, Rajagopal A, Chueh CC, Jo SB, Liu B, Zhao T, Jen AKY. Stable Low-Bandgap Pb-Sn Binary Perovskites for Tandem Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8990-8997. [PMID: 27545111 DOI: 10.1002/adma.201602696] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/19/2016] [Indexed: 05/22/2023]
Abstract
A low-bandgap (1.33 eV) Sn-based MA0.5 FA0.5 Pb0.75 Sn0.25 I3 perovskite is developed via combined compositional, process, and interfacial engineering. It can deliver a high power conversion efficiency (PCE) of 14.19%. Finally, a four-terminal all-perovskite tandem solar cell is demonstrated by combining this low-bandgap cell with a semitransparent MAPbI3 cell to achieve a high efficiency of 19.08%.
Collapse
Affiliation(s)
- Zhibin Yang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Adharsh Rajagopal
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Chu-Chen Chueh
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Sae Byeok Jo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Bo Liu
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Ting Zhao
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA.
| |
Collapse
|
18
|
Chiang CH, Wu CG. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells. CHEMSUSCHEM 2016; 9:2666-2672. [PMID: 27601006 DOI: 10.1002/cssc.201600887] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 05/22/2023]
Abstract
The power conversion efficiency (PCE) of the perovskite solar cell is high enough to be commercially viable. The next important issue is the stability of the device. This article discusses the effect of the perovskite grain-size on the long-term stability of inverted perovskite solar cells. Perovskite films composed of various sizes of grains were prepared by controlling the solvent annealing time. The grain-size related stability of the inverted cells was investigated both in ambient atmosphere at relative humidity of approximately 30-40 % and in a nitrogen filled glove box (H2 O<0.1 ppm, O2 <10 ppm). The PCE of the solar cell based on a perovskite film having the grain size larger than 1 μm (D-10) decreases less than 10 % with storage in a glove box and less than 15 % when it was stored under an ambient atmosphere for 30 days. However, the cell using the perovskite film composed of small (∼100 nm) perovskite grains (D-0) exhibits complete loss of PCE after storage under the ambient atmosphere for only 15 days and a PCE loss of up to 70 % with storage in the glove box for 30 days. These results suggest that, even under H2 O-free conditions, the chemical- and thermal-induced production of pin holes at the grain boundaries of the perovskite film could be the reason for long-term instability of inverted perovskite solar cells.
Collapse
Affiliation(s)
- Chien-Hung Chiang
- Research Center for New Generation Photovoltaics, National Central University, Jhong-Li, Taiwan, 32001, Republic of China
| | - Chun-Guey Wu
- Department of Chemistry and Research Center for New Generation Photovoltaics, National Central University, Jhong-Li, Taiwan, 32001, Republic of China.
- Research Center for New Generation Photovoltaics, National Central University, Jhong-Li, Taiwan, 32001, Republic of China.
| |
Collapse
|