1
|
Zatryb G, Adamski A, Chrzanowski M, Żak AM, Podhorodecki A. The influence of solvent refractive index on the photoluminescence decay of thick-shell gradient-alloyed colloidal quantum dots investigated in a wide range of delay times. LUMINESCENCE 2024; 39:e4759. [PMID: 38693721 DOI: 10.1002/bio.4759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Colloidal semiconductor quantum dots have many potential optical applications, including quantum dot light-emitting diodes, single-photon sources, or biological luminescent markers. The optical properties of colloidal quantum dots can be affected by their dielectric environment. This study investigated the photoluminescence (PL) decay of thick-shell gradient-alloyed colloidal semiconductor quantum dots as a function of solvent refractive index. These measurements were conducted in a wide range of delay times to account for both the initial spontaneous decay of excitons and the delayed emission of excitons that has the form of a power law. It is shown that whereas the initial spontaneous PL decay is very sensitive to the refractive index of the solvent, the power-law delayed emission of excitons is not. Our results seem to exclude the possibility of carrier self-trapping in the considered solvents and suggest the existence of trap states inside the quantum dots. Finally, our data show that the average exciton lifetime significantly decreases as a function of the solvent refractive index. The change in exciton lifetime is qualitatively modeled and discussed.
Collapse
Affiliation(s)
- Grzegorz Zatryb
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Adrian Adamski
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Maciej Chrzanowski
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Andrzej M Żak
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Artur Podhorodecki
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
2
|
Otero C, Carreño A, Polanco R, Llancalahuen FM, Arratia-Pérez R, Gacitúa M, Fuentes JA. Rhenium (I) Complexes as Probes for Prokaryotic and Fungal Cells by Fluorescence Microscopy: Do Ligands Matter? Front Chem 2019; 7:454. [PMID: 31297366 PMCID: PMC6606945 DOI: 10.3389/fchem.2019.00454] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022] Open
Abstract
Re(I) complexes have exposed highly suitable properties for cellular imaging (especially for fluorescent microscopy) such as low cytotoxicity, good cellular uptake, and differential staining. These features can be modulated or tuned by modifying the ligands surrounding the metal core. However, most of Re(I)-based complexes have been tested for non-walled cells, such as epithelial cells. In this context, it has been proposed that Re(I) complexes are inefficient to stain walled cells (i.e., cells protected by a rigid cell wall, such as bacteria and fungi), presumably due to this physical barrier hampering cellular uptake. More recently, a series of studies have been published showing that a suitable combination of ligands is useful for obtaining Re(I)-based complexes able to stain walled cells. This review summarizes the main characteristics of different fluorophores used in bioimage, remarking the advantages of d6-based complexes, and focusing on Re(I) complexes. In addition, we explored different structural features of these complexes that allow for obtaining fluorophores especially designed for walled cells (bacteria and fungi), with especial emphasis on the ligand choice. Since many pathogens correspond to bacteria and fungi (yeasts and molds), and considering that these organisms have been increasingly used in several biotechnological applications, development of new tools for their study, such as the design of new fluorophores, is fundamental and attractive.
Collapse
Affiliation(s)
- Carolina Otero
- Facultad de Medicina, Escuela de Química y Farmacia, Universidad Andres Bello, Santiago, Chile
| | - Alexander Carreño
- Center for Applied Nanosciences (CANS), Universidad Andres Bello, Santiago, Chile
| | - Rubén Polanco
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Felipe M Llancalahuen
- Facultad de Medicina, Escuela de Química y Farmacia, Universidad Andres Bello, Santiago, Chile
| | - Ramiro Arratia-Pérez
- Center for Applied Nanosciences (CANS), Universidad Andres Bello, Santiago, Chile
| | - Manuel Gacitúa
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
3
|
Measurement of ligand coverage on cadmium selenide nanocrystals and its influence on dielectric dependent photoluminescence intermittency. Commun Chem 2019. [DOI: 10.1038/s42004-019-0164-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
4
|
Oliveira OVD, Costa GDC, Costa LT. Encapsulation of the Sulfur Compounds by Cucurbit[7]uril: A Quantum Chemistry Study. J Phys Chem B 2018. [PMID: 30452266 DOI: 10.1021/acs.jpcc.8b03206] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Benzothiophene (BT) and dibenzothiophene (DT) are the most important contaminants in the petroleum derivatives responsible for serious environmental and health problems. Therefore, we have investigated the absorption of these compounds for the first time by considering cucurbit[7]uril (CB[7]) as the host molecule and using the theoretical levels of density functional theory//B3LYP-D3/6-31G(d). BT and DT absorbed into CB[7] do not undergo a significant structural change in the CB[7] structure. The energy gap of the S-compounds@CB[7] in water and hexane solvents was approximately 5 eV, and this large value implies that the complexes have high chemical stability. Moreover, the absorption of the BT and DT into CB[7] in the water and hexane solvents is a favorable process, whereas the lowest binding energy was observed between the dibenzothiophene and CB[7] in the DT@CB[7] complex. The solvation enthalpy shows a preferential solvation of the complexes in water than in hexane solvent. This trend is confirmed by the AIM analysis that shows the highest stability for the DT@CB[7] system with the contribution of cooperative hydrogen bonding. The transfer free energy of S-compounds@CB[7] complexes from hexane to water are -66.12 and -59.56 kcal/mol for BT@CB[7] and DT@CB[7], respectively, implying the spontaneous transference of these complexes from hexane to water solvent. Overall, our results show that the cucurbiturils can be a new class of host molecules to be used in the removal of S-compounds from petroleum derivatives. Finally, a schematic flow diagram of the desulfurization process by cucurbiturils was proposed.
Collapse
Affiliation(s)
- Osmair Vital de Oliveira
- Instituto Federal de Educação Ciência e Tecnologia de São Paulo, campus Catanduva , CEP: 29106-010 , Catanduva, São Paulo 15808-305 , Brazil
| | - Gabriela de Carvalho Costa
- Instituto de Química, Universidade Federal Fluminense - Outeiro de São João Batista , s/n CEP:24020-141 , Niterói, Rio de Janeiro 24210-000 , Brazil
| | - Luciano T Costa
- Instituto de Química, Universidade Federal Fluminense - Outeiro de São João Batista , s/n CEP:24020-141 , Niterói, Rio de Janeiro 24210-000 , Brazil
| |
Collapse
|
5
|
Fisher AAE, Osborne MA. Sizing Up Excitons in Core-Shell Quantum Dots via Shell-Dependent Photoluminescence Blinking. ACS NANO 2017; 11:7829-7840. [PMID: 28679040 DOI: 10.1021/acsnano.7b01978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Semiconductor nanocrystals or quantum dots (QDs) are now widely used across solar cell, display, and bioimaging technologies. While advances in multishell, alloyed, and multinary core-shell QD structures have led to improved light-harvesting and photoluminescence (PL) properties of these nanomaterials, the effects that QD-capping have on the exciton dynamics that govern PL instabilities such as blinking in single-QDs is not well understood. We report experimental measurements of shell-size-dependent absorption and PL intermittency in CdSe-CdS QDs that are consistent with a modified charge-tunnelling, self-trapping (CTST) description of the exciton dynamics in these nanocrystals. By introducing an effective, core-exciton size, which accounts for delocalization of charge carriers across the QD core and shell, we show that the CTST models both the shell-depth-dependent red-shift of the QD band gap and changes in the on/off-state switching statistics that we observe in single-QD PL intensity trajectories. Further analysis of CdSe-ZnS QDs, shows how differences in shell structure and integrity affect the QD band gap and PL blinking within the CTST framework.
Collapse
Affiliation(s)
- Aidan A E Fisher
- Department of Chemistry, School of Life Sciences, University of Sussex , Falmer, Brighton BN1 9QJ, United Kingdom
| | - Mark A Osborne
- Department of Chemistry, School of Life Sciences, University of Sussex , Falmer, Brighton BN1 9QJ, United Kingdom
| |
Collapse
|
6
|
Xu H, Brismar H, Fu Y. Influence of surface states on blinking characteristics of single colloidal CdSe-CdS/ZnS core-multishell quantum dot. J Colloid Interface Sci 2017. [PMID: 28645036 DOI: 10.1016/j.jcis.2017.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We carefully characterized the fluorescence blinking of single colloidal CdSe-CdS/ZnS core-multishell quantum dots (QDs) with different surface modifications, including octadecylamine (ODA) coated QDs dispersed in chloroform, aqueous 3-mercaptopropionic acids (3MPA) coated QDs in HEPES solution treated by Ca2+ ions and ethylene glycol tetraacetic acid (EGTA, Ca2+ chelator), and aqueous 3MPA-QDs treated by glycerol. It was found that the on- and off-state probability density distributions displayed different rules. The off-state probability density distributions of all QDs complied well with the inverse power law, while the on-state probability density distributions bended upwards in log-log scale, and the degree of the upwards-bending correlated strongly with QD surface modification and fluorescence brightness of the single QD. Further autocorrelation analysis revealed that the fluorescence time series of a single QD was more random when the single QD showed a stronger fluorescence. Realistic numerical simulations with input parameters from quantum mechanical calculations showed that the QD exciton was first generated by an excitation photon; It radiatively recombined to give QD's fluorescence response, i.e., the on-state, which displayed the upwards-bended on-state probability density distribution profile; The electron and/or the hole of the photoexcited exciton in the QD core, after tunneling to the QD surface, randomly walked through the two-dimensional network of the QD surface states, resulting in the off-state probability density distribution profile of the inverse power law. Surface modification modified the QD surface-state network, in turn modifying the on/off probability density distribution profiles. Our findings provide us with a novel highway of applying colloidal QDs to study microscopic physical, and chemical, processes in many fields including in vivo and in vitro imaging, sensing and labelling.
Collapse
Affiliation(s)
- Hao Xu
- Section of Cellular Biophysics, Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, SE-171 21 Solna, Sweden
| | - Hjalmar Brismar
- Section of Cellular Biophysics, Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, SE-171 21 Solna, Sweden
| | - Ying Fu
- Section of Cellular Biophysics, Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, SE-171 21 Solna, Sweden.
| |
Collapse
|