1
|
Luoshan MD, Yang Y, Dou ZL, Zhang FY, Yan HY, Zhou L, Wang QQ. Highly controlled synthesis of symmetrically branched tripod and pentapod nanocrystals with enhanced photocatalytic performance. J Colloid Interface Sci 2024; 669:1022-1030. [PMID: 38729809 DOI: 10.1016/j.jcis.2024.04.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Anisotropic nanostructures with tunable optical properties induced by controllable size and symmetry have attracted much attention in many applications. Herein, we report a controlled synthesis of symmetrically branched AuCu alloyed nanocrystals. By varying Au:Cu atom ratio in precursor, Y-shaped tripods with three-fold symmetry and star-shaped pentapods with five-fold symmetry are synthesized, respectively. The growth mechanism of AuCu tripods from icosahedral seeds and AuCu pentapods from decahedral seeds is revealed. Aiming to excellent photocatalytic performance, CdS nanocrystals are controlled grown onto the sharp tips of AuCu tripods and pentapods. In addition, a carrier-selective blocking layer of Ag2S is introduced between AuCu and CdS, for achieving effective charge separation in AuCu-Ag2S-CdS nanohybrids. Through evaluating the photocatalytic performance by hydrogen generation experiments, the AuCu-Ag2S-CdS tripod nanocrystals exhibit an optimized hydrogen evolution rate of 2182 μmol·g-1·h-1. These findings will contribute greatly to the understanding of complex nanoparticle growth mechanism and provide a strategy for the design of anisotropic nanoalloys for widely photocatalytic applications.
Collapse
Affiliation(s)
- Meng-Dai Luoshan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China; School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Yang Yang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China; School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Zhen-Long Dou
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China
| | - Feng-Yuan Zhang
- School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Hang-Yu Yan
- School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Li Zhou
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China.
| | - Qu-Quan Wang
- Department of Physics, College of Science, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Wang Z, Wang P, Mao Q, Tian W, Xu Y, Li X, Wang L, Wang H. Urchin-like PdOs nanostructure for hydrogen evolution electrocatalysis. NANOTECHNOLOGY 2022; 33:325401. [PMID: 35504246 DOI: 10.1088/1361-6528/ac6c36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
The compositional and structural engineering of advanced nanomaterials for hydrogen evolution reaction (HER) is highly necessary for efficient hydrogen production. Herein, PdOs nanospine assemblies (PdOs NAs) with urchin-like structures are fabricated via one-step route using DM-970 and KBr as surfactant agent and capping agent, respectively. Benefiting from electronic effect and multi-branched structure, the PdOs NAs exhibit superior performance for HER in alkaline and neutral solutions, requiring overpotentials of 28 and 35 mV at -10 mA cm-2, respectively, as well as superior long-term stability. This study offers a universal approach for the fabrication of active Pd-based catalysts with multi-branched morphology for efficient water electrolysis and beyond.
Collapse
Affiliation(s)
- Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Peng Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wenjing Tian
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
3
|
Nguyen QN, Chen R, Lyu Z, Xia Y. Using Reduction Kinetics to Control and Predict the Outcome of a Colloidal Synthesis of Noble-Metal Nanocrystals. Inorg Chem 2021; 60:4182-4197. [PMID: 33522790 DOI: 10.1021/acs.inorgchem.0c03576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Improving the performance of noble-metal nanocrystals in various applications critically depends on our ability to manipulate their synthesis in a rational, robust, and controllable fashion. Different from a conventional trial-and-error approach, the reduction kinetics of a colloidal synthesis has recently been demonstrated as a reliable knob for controlling the synthesis of noble-metal nanocrystals in a deterministic and predictable manner. Here we present a brief Viewpoint on the recent progress in leveraging reduction kinetics for controlling and predicting the outcome of a synthesis of noble-metal nanocrystals. With a focus on Pd nanocrystals, we first offer a discussion on the correlation between the initial reduction rate and the internal structure of the resultant seeds. The kinetic approaches for controlling both nucleation and growth in a one-pot setting are then introduced with an emphasis on manipulation of the reduction pathways taken by the precursor. We then illustrate how to extend the strategy into a bimetallic system for the preparation of nanocrystals with different shapes and elemental distributions. Finally, the influence of speciation of the precursor on reduction kinetics is highlighted, followed by our perspectives on the challenges and future endeavors in achieving a controllable and predictable synthesis of noble-metal nanocrystals.
Collapse
Affiliation(s)
- Quynh N Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Iqbal M, Kim Y, Saputro AG, Shukri G, Yuliarto B, Lim H, Nara H, Alothman AA, Na J, Bando Y, Yamauchi Y. Tunable Concave Surface Features of Mesoporous Palladium Nanocrystals Prepared from Supramolecular Micellar Templates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51357-51365. [PMID: 33146017 DOI: 10.1021/acsami.0c13136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Concave metallic nanocrystals with a high density of low-coordinated atoms on the surface are essential for the realization of unique catalytic properties. Herein, mesoporous palladium nanocrystals (MPNs) that possess various degrees of curvature are successfully synthesized following an approach that relies on a facile polymeric micelle assembly approach. The as-prepared MPNs exhibit larger surface areas compared to conventional Pd nanocrystals and their nonporous counterparts. The MPNs display enhanced electrocatalytic activity for ethanol oxidation when compared to state-of-the-art commercial palladium black and conventional palladium nanocubes used as catalysts. Interestingly, as the degree of curvature increases, the surface-area-normalized activity also increases, demonstrating that the curvature of MPNs and the presence of high-index facets are crucial considerations for the design of electrocatalysts.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Institute of Molecular Plus, Tianjin University, Building 11, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Advanced Functional Materials Research Group and Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Yena Kim
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Adhitya Gandaryus Saputro
- Advanced Functional Materials Research Group and Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Ganes Shukri
- Advanced Functional Materials Research Group and Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Brian Yuliarto
- Advanced Functional Materials Research Group and Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Hyunsoo Lim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hiroki Nara
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-Tsurumakicho, Shinjuku-ku, Tokyo 162-0041, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yoshio Bando
- Institute of Molecular Plus, Tianjin University, Building 11, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute of Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|
5
|
Wang ZQ, Sun J, Xu ZN, Guo GC. CO direct esterification to dimethyl oxalate and dimethyl carbonate: the key functional motifs for catalytic selectivity. NANOSCALE 2020; 12:20131-20140. [PMID: 32749438 DOI: 10.1039/d0nr03008b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The direct esterification of CO involves processes using CO as the starting material and ester chemicals as products. Dimethyl oxalate (DMO) and dimethyl carbonate (DMC) are two different products of the direct CO esterification reaction. However, the effective control of the reaction pathway and direct synthesis of DMO and DMC are challenging. In this review, we summarize the recent research progress on the direct esterification of CO to DMO/DMC and reveal the functional motifs responsible for the catalytic selectivity. Firstly, we discuss the microstructure of catalysts for the direct esterification of CO to DMO and DMC, including the valence state and the aggregate state of Pd. Then, the influence of characteristics of the support on the selectivity is analyzed. Importantly, the aggregate state of the active component, Pd is deemed as a vital functional motif for catalytic selectivity. The isolated Pd is conducive for the formation of DMC, while the aggregated Pd is beneficial for the formation of DMO. This review will provide rational guidance for the direct esterification of CO to DMO and DMC.
Collapse
Affiliation(s)
- Zhi-Qiao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jing Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Zhong-Ning Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
6
|
Vakil PN, Hardy DA, Strouse GF. Synthesis of Highly Uniform Nickel Multipods with Tunable Aspect Ratio by Microwave Power Control. ACS NANO 2018; 12:6784-6793. [PMID: 29912545 DOI: 10.1021/acsnano.8b01992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As the importance of anisotropic nanostructures and the role of surfaces continues to rise in applications including catalysis, magneto-optics, and electromagnetic interference shielding, there is a need for efficient and economical synthesis routes for such nanostructures. The article describes the application of cycled microwave power for the rapid synthesis of highly branched pure-phase face-centered cubic crystalline nickel multipod nanostructures with >99% multipod population. By controlling the power delivery to the reaction mixture through cycling, superior control is achieved over the growth kinetics of the metallic nanostructures, allowing formation of multipods consisting of arms with different aspect ratios. The multipod structures are formed under ambient conditions in a simple reaction system composed of nickel acetylacetonate (Ni(acac)2), oleylamine (OAm), and oleic acid (OAc) in a matter of minutes by selective heating at the (111) overgrowth corners on Ni nanoseeds. The selective heating at the corners leads to accelerated autocatalytic growth along the ⟨111⟩ direction through a "lightning rod" effect. The length is proprtional to the length and number of microwave (MW)-on cycles, whereas the core size is controlled by continuous MW power delivery. The roles of heating mode (cycling versus variable power versus convective heating) during synthesis of the materials is explored, allowing a mechanism into how cycled microwave energy may allow fast multipod evolution to be proposed.
Collapse
Affiliation(s)
- Parth N Vakil
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - David A Hardy
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Geoffrey F Strouse
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| |
Collapse
|
7
|
Xu GR, Bai J, Yao L, Xue Q, Jiang JX, Zeng JH, Chen Y, Lee JM. Polyallylamine-Functionalized Platinum Tripods: Enhancement of Hydrogen Evolution Reaction by Proton Carriers. ACS Catal 2016. [DOI: 10.1021/acscatal.6b03049] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Guang-Rui Xu
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi
Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab
for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Juan Bai
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi
Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab
for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Lin Yao
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Qi Xue
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi
Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab
for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jia-Xing Jiang
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi
Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab
for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jing-Hui Zeng
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi
Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab
for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Yu Chen
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi
Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab
for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jong-Min Lee
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
8
|
Han SH, Bai J, Liu HM, Zeng JH, Jiang JX, Chen Y, Lee JM. One-Pot Fabrication of Hollow and Porous Pd-Cu Alloy Nanospheres and Their Remarkably Improved Catalytic Performance for Hexavalent Chromium Reduction. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30948-30955. [PMID: 27778503 DOI: 10.1021/acsami.6b10343] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Noble metal nanostructures (NMNSs) play a crucial role in many heterogeneous catalytic reactions. Hollow and porous NMNSs possess generally prominent advantages over their solid counterparts due to their unordinary structural features. In this work, we describe a facial one-pot synthesis of hollow and porous Pd-Cu alloy nanospheres (Pd-Cu HPANSs) through a polyethylenimine (PEI)-assisted oxidation-dissolution mechanism. The strong coordination interaction between CuII and PEI facilitates the oxidation-dissolution of the Cu2O nanospheres template under air conditions, which is responsible for the generation of the Pd-Cu alloy and the convenient removal of the Cu2O nanospheres template at room temperature. Compared to the commercial Pd black, the Pd-Cu HPANSs show remarkably improved catalytic activity for the reduction of K2Cr2O7 by HCOOH at room temperature, attributing to the enhanced catalytic activity of the Pd-Cu HPANSs for the dehydrogenation decomposition of HCOOH.
Collapse
Affiliation(s)
- Shu-He Han
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaaxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710062, China
| | - Juan Bai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaaxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710062, China
| | - Hui-Min Liu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaaxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710062, China
| | - Jing-Hui Zeng
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaaxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710062, China
| | - Jia-Xing Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaaxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710062, China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaaxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710062, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637459, Singapore
| |
Collapse
|