1
|
Zhang H, Zhang W, Luo D, Zhang S, Kong L, Xia H, Xie Q, Xu G, Chen Z, Sun Z. Stabilizing Solid Electrolyte Interphase on Liquid Metal Via Dynamic Hydrogel-Derived Carbon Framework Encapsulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401234. [PMID: 38520380 DOI: 10.1002/adma.202401234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Eutectic gallium-indium liquid metal (EGaIn-LM), with a considerable capacity and unique self-healing properties derived from its intrinsic liquid nature, gains tremendous attention for lithium-ion batteries (LIBs) anode. However, the fluidity of the LM can trigger continuous consumption of the electrolyte, and its liquid-solid transition during the lithiation/de-lithiation process may result in the rupture of the solid electrolyte interface (SEI). Herein, LM is employed as an initiator to in situ assemble the 3D hydrogel for dynamically encapsulating itself; the LM nanoparticles can be homogeneously confined within the hydrogel-derived carbon framework (HDC) after calcination. Such design effectively alleviates the volume expansion of LM and facilitates electron transportation, resulting in a superior rate capability and long-term cyclability. Further, the "dual-layer" SEI structure and its key components, including the robust LiF outer layer and corrosion-resistant and ionic conductive LiGaOx inner layer are revealed, confirming the involvement of LM in the formation of SEI, as well as the important role of carbon framework in reducing interfacial side reactions and SEI decomposition. This work provides a distinct perspective for the formation, structural evolution, and composition of SEI at the liquid/solid interface, and demonstrates an effective strategy to construct a reliable matrix for stabilizing the SEI.
Collapse
Affiliation(s)
- Hanning Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing, 211189, China
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing, 211189, China
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Dan Luo
- Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, 116023, China
| | - Siyu Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing, 211189, China
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Lingqiao Kong
- Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing, 211189, China
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Huan Xia
- Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing, 211189, China
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Qian Xie
- Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing, 211189, China
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Gang Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing, 211189, China
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Zhongwei Chen
- Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, 116023, China
| | - Zhengming Sun
- Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing, 211189, China
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
2
|
Song X, Song Y, Li X, Wu X, Wang Z, Sun X, An M, Wei X, Zhao Y, Wei J, Bi C, Sun J, Nara H, You J, Yamauchi Y. Multi-Scale Engineered 2D Carbon Polyhedron Array with Enhanced Electrocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305459. [PMID: 37922532 DOI: 10.1002/smll.202305459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Indexed: 11/07/2023]
Abstract
Electrocatalyst engineering from the atomic to macroscopic level of electrocatalysts is one of the most powerful routes to boost the performance of electrochemical devices. However, multi-scale structure engineering mainly focuses on the range of atomic-to-particle scale such as hierarchical porosity engineering, while catalyst engineering at the macroscopic level, such as the arrangement configuration of nanoparticles, is often overlooked. Here, a 2D carbon polyhedron array with a multi-scale engineered structure via facile chemical etching, ice-templating induced self-assembly, and high-temperature pyrolysis processes is reported. Controlled phytic acid etching of the carbon precursor introduces homogeneous atomic phosphorous and nitrogen doping, as well as a well-defined mesoporous structure. Subsequent ice-templated self-assembly triggers the formation of a 2D particle array superstructure. The atomic-level doping gives rise to high intrinsic activity, while the well-engineered porous structure and particle arrangement addresses the mass transport limitations at the microscopic particle level and macroscopic electrode level. As a result, the as-prepared electrocatalyst delivers outstanding performance toward oxygen reduction reaction in both acidic and alkaline media, which is better than recently reported state-of-the-art metal-free electrocatalysts. Molecular dynamics simulation together with extensive characterizations indicate that the performance enhancement originates from multi-scale structural synergy.
Collapse
Affiliation(s)
- Xiaokai Song
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Yujie Song
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaotong Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zequn Wang
- College of Mechanical and Electrical Engineering, Shanxi University of Science and Technology, Xi'an, 710021, China
| | - Xuhui Sun
- College of Mechanical and Electrical Engineering, Shanxi University of Science and Technology, Xi'an, 710021, China
| | - Meng An
- College of Mechanical and Electrical Engineering, Shanxi University of Science and Technology, Xi'an, 710021, China
| | - Xiaoqian Wei
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Yingji Zhao
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Jiamin Wei
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Chenglu Bi
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Jianhua Sun
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Hiroki Nara
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Jungmok You
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, South Korea
| | - Yusuke Yamauchi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, South Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
3
|
Ning J, Zou J, Long Y, Ren X, Cao Y, Li T, Dong A. Monolayer supertubes of Carbon-Armored platinum nanocrystals enabling robust oxygen reduction electrocatalysis. J Colloid Interface Sci 2023; 648:719-726. [PMID: 37321091 DOI: 10.1016/j.jcis.2023.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Self-assembled superstructures composed of nanocrystals (NCs) have shown immense potential for enhancing the performance in electrocatalytic applications. However, there has been limited research on the self-assembly of platinum (Pt) into low-dimensional superstructures as efficient electrocatalysts for oxygen reduction reaction (ORR). In this study, we designed a unique tubular superstructure composed of monolayer or sub-monolayer carbon-armored platinum nanocrystals (Pt NCs) using a template-assisted epitaxial assembly approach. The organic ligands on the surface of Pt NCs were in situ carbonized, resulting in few-layer graphitic carbon shells that encapsulate Pt NCs. Due to their monolayer assembly and tubular geometry, the Pt utilization of the supertubes was 1.5 times higher than that of conventional carbon-supported Pt NCs. As a result, such Pt supertubes exhibit remarkable electrocatalytic performance for the ORR in acidic media, with a high half-wave potential of 0.918 V and a high mass activity of 181 A g-1Pt at 0.9 V, which are comparable to commercial carbon-supported Pt (Pt/C) catalysts. Furthermore, the Pt supertubes demonstrate robust catalytic stability, as confirmed by long-term accelerated durability tests and identical-location transmission electron microscopy. This study presents a new approach to designing Pt superstructures for highly efficient and stable electrocatalysis.
Collapse
Affiliation(s)
- Jing Ning
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Jinxiang Zou
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Ying Long
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xiaomeng Ren
- PLA Naval Medical Center, 5 Panshan Rd, Shanghai 200052, China
| | - Yangfei Cao
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Tongtao Li
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Angang Dong
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
Valencia FJ, Amigo N, Bringa EM. Tension-compression behavior in gold nanoparticle arrays: a molecular dynamics study. NANOTECHNOLOGY 2021; 32:145715. [PMID: 33352539 DOI: 10.1088/1361-6528/abd5e8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mechanical properties of Au nanoparticle arrays are studied by tensile and compressive deformation, using large-scale molecular dynamics simulations which include up to 16 million atoms. Our results show that mechanical response is dominated by nanoparticle size. For compression, strength versus particle size shows similar trends in strength than full-density nanocrystals. For diameters (d) below 10 nm there is an inverse Hall-Petch (HP) regime. Beyond a maximum at 10 nm, strength decreases following a HP d -1/2 dependence. In both regimes, interparticle sliding and dislocation activity play a role. The array with 10 nm nanoparticles showed the same mechanical properties than a polycrystalline bulk with the same grain size. This enhanced strength, for a material nearly 20% lighter, is attributed to the absence of grain boundary junctions, and to the array geometry, which leads to constant flow stress by means of densification, nanoparticle rotation, and dislocation activity. For tension, there is something akin to brittle fracture for large grain sizes, with NPs debonding perpendicular to the traction direction. The Johnson-Kendall-Roberts contact theory was successfully applied to describe the superlattice porosity, predicting also the array strength within 10% of molecular dynamics values. Although this study is focused on Au nanoparticles, our findings could be helpful in future studies of similar arrays with NPs of different kinds of materials.
Collapse
Affiliation(s)
- Felipe J Valencia
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
- CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago, Chile
| | - Nicolás Amigo
- Escuela de Data Science, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Eduardo M Bringa
- CONICET and Facultad de Ingeniería, Universidad de Mendoza, Mendoza, 5500, Argentina
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Chile
| |
Collapse
|
5
|
Zhang L, Ding Y, Wu KH, Niu Y, Luo J, Yang X, Zhang B, Su D. Pd@C core-shell nanoparticles on carbon nanotubes as highly stable and selective catalysts for hydrogenation of acetylene to ethylene. NANOSCALE 2017; 9:14317-14321. [PMID: 28944384 DOI: 10.1039/c7nr04992g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Developing highly selective and stable catalysts for acetylene hydrogenation is an imperative task in the chemical industry. Herein, core-shell Pd@carbon nanoparticles supported on carbon nanotubes (Pd@C/CNTs) were synthesized. During the hydrogenation of acetylene, the selectivity of Pd@C/CNTs to ethylene was distinctly improved. Moreover, Pd@C/CNTs showed excellent stability during the hydrogenation reaction.
Collapse
Affiliation(s)
- Liyun Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Yiliguma, Tang Y, Zheng G. Colloidal nanocrystals for electrochemical reduction reactions. J Colloid Interface Sci 2017; 485:308-327. [DOI: 10.1016/j.jcis.2016.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 02/03/2023]
|