1
|
Hou C, Zhang W, Dai X, Qiu J, Russell TP, Sun X, Yan S. Spatially Confined Fabrication of Polar Poly(Vinylidene Fluoride) Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205790. [PMID: 36351233 DOI: 10.1002/smll.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Polar poly(vinylidene fluoride) (PVDF) nanotubes have attracted significant attention due to their excellent piezoelectric and ferroelectric properties, yet a tunable fabrication of homogeneous polar PVDF nanotubes remains a challenge. Here, a simple method is reported to fabricate polar PVDF nanotubes using anodize aluminum oxide (AAO) membranes as templates that are removed by etching in a potassium hydroxide (KOH) solution and then ageing at room temperature. PVDF nanotubes originally crystallized in the AAO membrane are pure α-crystals with very low crystallinity, yet after being released from the templates, the crystallinity of the nanotubes markedly increases with ageing at room temperature, leading to the formation of β-PVDF crystals in a very short time, with the formation of γ crystals after longer ageing times. A large amount of γ crystals formed when the released PVDF nanotubes are heated to ≈130 °C. The formation of polar PVDF nanotubes released from the AAO templates treated with higher concentrations of alkaline solution results from the reaction of the surface of the PVDF nanotubes with the alkaline solution and structure reorganization under confined conditions. This large-scale preparation of β- and γ-PVDF opens a new pathway to produce polar PVDF nanomaterials.
Collapse
Affiliation(s)
- Chunyue Hou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenxian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiying Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Thomas P Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao, 266042, China
| |
Collapse
|
2
|
Wang S, Luo Z, Liang J, Hu J, Jiang N, He J, Li Q. Polymer Nanocomposite Dielectrics: Understanding the Matrix/Particle Interface. ACS NANO 2022; 16:13612-13656. [PMID: 36107156 DOI: 10.1021/acsnano.2c07404] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer nanocomposite dielectrics possess exceptional electric properties that are absent in the pristine dielectric polymers. The matrix/particle interface in polymer nanocomposite dielectrics is suggested to play decisive roles on the bulk material performance. Herein, we present a critical overview of recent research advances and important insights in understanding the matrix/particle interfacial characteristics in polymer nanocomposite dielectrics. The primary experimental strategies and state-of-the-art characterization techniques for resolving the local property-structure correlation of the matrix/particle interface are dissected in depth, with a focus on the characterization capabilities of each strategy or technique that other approaches cannot compete with. Limitations to each of the experimental strategy are evaluated as well. In the last section of this Review, we summarize and compare the three experimental strategies from multiple aspects and point out their advantages and disadvantages, critical issues, and possible experimental schemes to be established. Finally, the authors' personal viewpoints regarding the challenges of the existing experimental strategies are presented, and potential directions for the interface study are proposed for future research.
Collapse
Affiliation(s)
- Shaojie Wang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhen Luo
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiajie Liang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Hu
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinliang He
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Qi Li
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Xing Z, Zhu N, Yang Y, Wang X, Zuo B. Alternating chain sequence weakening of interfacial molecular interactions enhances the Tg confinement effect of polymers. Polym J 2022. [DOI: 10.1038/s41428-022-00672-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Wang J, Li Y, Gao Y, Ye X. Effect of doped functional bioceramic on in vitro degradation and histocompatibility of poly(l-lactide-trimethylene carbonate-glycolide) terpolymers. MATERIALS TODAY COMMUNICATIONS 2022; 31:103616. [DOI: 10.1016/j.mtcomm.2022.103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
|
5
|
Zhang H, Chang T, Zhang S, Zhou K, Zhang W, Hu Z. Effects of chain ends and densities on the glass transition of polymer thin films probed by linear and cyclic polystyrene. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Dual Effects of Interfacial Interaction and Geometric Constraints on Structural Formation of Poly(butylene terephthalate) Nanorods. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2736-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Guner B, Bulbul YE, Dilsiz N. Recycling of polyvinyl butyral from waste automotive windshield and fabrication of their electrospun fibrous materials. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Fu ZZ, Guo SJ, Li CX, Wang K, Zhang Q, Fu Q. Hydrogen-bond-dominated mechanical stretchability in PVA films: from phenomenological to numerical insights. Phys Chem Chem Phys 2022; 24:1885-1895. [PMID: 34990505 DOI: 10.1039/d1cp03893a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonds (H-bonds) in poly(vinyl alcohol) (PVA) play a crucial role in macroscopic mechanical properties, particularly for stretchability. However, there is still some ambiguity about the quantitative dependence of H-bond interactions on the mechanical performance, mainly attributed to the difficulty in the discrimination of various H-bond types. Herein, small molecular chemicals as plasticizers were incorporated into the PVA matrix to tailor the H-bonding interactions. By altering the PVA molecular weight, plasticizer type and loading, both the stretchability and H-bond content were regulated on a large scale. By a combination of DMA, IR spectroscopy, MD simulation and solid-state 13C-NMR, every sort of H-bond in PVA was assigned, and their relative fractions were ascertained quantitatively. After correlating the elongation ratio with the relative fraction of the different types of H-bonding interaction, it was found that all the pairs of elongation vs. intermolecular H-bond content derived from different series of PVA/plasticizer films could be plotted into a master curve and exhibited good linearity, indicating that intermolecular H-bonds dominate the mechanical stretchability in PVA films. Our efforts contribute towards an in-depth understanding of performance optimization induced by H-bond manipulation from empirical, phenomenological aspects to intrinsic, numerical insights.
Collapse
Affiliation(s)
- Zhen-Zhen Fu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, People's Republic of China.
| | - Sheng-Jie Guo
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, People's Republic of China.
| | - Chen-Xi Li
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, People's Republic of China.
| | - Ke Wang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, People's Republic of China.
| | - Qin Zhang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, People's Republic of China.
| | - Qiang Fu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, People's Republic of China.
| |
Collapse
|
9
|
Nonque F, Benlahoues A, Audourenc J, Sahut A, Saint-Loup R, Woisel P, Potier J. Study on polymerization of bio-based isosorbide monomethacrylate for the formation of low-T and high-T sustainable polymers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Liu Y, Wu Y, Yao J, Yin J, Lu J, Mao J, Yao M, Luo F. Confined Crystallization and Melting Behaviors of 3-Pentadecylphenol in Anodic Alumina Oxide Nanopores. ACS OMEGA 2021; 6:18235-18247. [PMID: 34308054 PMCID: PMC8296606 DOI: 10.1021/acsomega.1c02112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
To explore the effects of end groups on the confined crystallization of an alkyl chain, 3-pentadecylphenol (PDP) was infiltrated into the anodic aluminum oxide template (AAO) to investigate the melting and crystallization behaviors of PDP in a nanoconfined environment. Wide-angle X-ray diffraction (WAXD) found that the solid-solid phase transition of PDP occurred under confined conditions, and the absence of the (00L) reflections indicated that the stacking of the end groups of the alkyl chain layered structure was seriously disturbed. Thermal analysis (TG) showed that the thermal stability of the confined samples decreased due to the confinement effect, and the introduction of end groups made the confinement effect more obvious. Differential scanning calorimeter (DSC) results well reflected the space-time equivalence in the PDP crystallization processes, i.e., the solid-solid phase transition can be achieved by reducing the cooling rate or confining PDP in the nanometer space. Compared with C15, the introduction of the end groups with a phenol ring led to the disappearance of the solid-solid phase transition of an alkyl chain at high cooling rates. In the confined environment, the introduction of the end groups with a phenol ring caused the melting double peaks of the alkyl chain to become a single melting peak, and it also caused the disappearance of the surface freezing monolayer for alkyl chains. Through the analysis of crystallinity, it was found that AAO-PDP was more sensitive to AAO pore size changes than AAO-C15, the X c of AAO-PDP had a good linear relationship with the pore size d, but the X c of the AAO-C15 had a nonlinear relationship with the pore size d. Attenuated total reflection (ATR)-IR proved that in the confined environment, the order of the alkyl chain decreased and the degree of chain distortion increased.
Collapse
Affiliation(s)
- Yongdong Liu
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Yonghong Wu
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Jianqi Yao
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Jiajie Yin
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Jing Lu
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Jie Mao
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| | - Min Yao
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
- Ningxia
Baofeng Energy Group, Yinchuan 750001, China
| | - Faliang Luo
- State
Key Laboratory of High-Efficiency Coal Utilization and Green Chemical
Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, China
| |
Collapse
|
11
|
Abstract
This paper investigates the mechanical properties of oriented polyvinyl chloride (PVC) nanofiber mats, which, were obtained by electrospinning a PVC solution. PVC was dissolved in a solvent mixture of tetrahydrofuran/dimethylformamide. Electrospinning parameters used in our work were, voltage 20 kV; flow rate 0.5 mL/h; the distance between the syringe tip and collector was 15 cm. The rotating speed of the drum collector was varied from 500 to 2500 rpm with a range of 500 rpm. Nanofiber mats were characterized by scanning electron microscope, thermogravimetric analysis, differential scanning calorimetry methods. The mechanical properties of PVC nanofiber mats, such as tensile strength, Young’s modulus, thermal degradation, and glass transition temperature were also analyzed. It was shown that, by increasing the collector’s rotation speed from 0 (flat plate collector) to 2500 rpm (drum collector), the average diameter of PVC nanofibers decreased from 313 ± 52 to 229 ± 47 nm. At the same time, it was observed that the mechanical properties of the resulting nanofiber mats were improved: tensile strength increased from 2.2 ± 0.2 MPa to 9.1 ± 0.3 MPa, Young’s modulus from 53 ± 14 to 308 ± 19 MPa. Thermogravimetric analysis measurements showed that there was no difference in the process of thermal degradation of nanofiber mats and PVC powders. On the other hand, the glass transition temperature of nanofiber mats and powders did show different values, such values were 77.5 °C and 83.2 °C, respectively.
Collapse
|
12
|
Napolitano S. Irreversible adsorption of polymer melts and nanoconfinement effects. SOFT MATTER 2020; 16:5348-5365. [PMID: 32419002 DOI: 10.1039/d0sm00361a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For almost a decade, growing experimental evidence has revealed a strong correlation between the properties of nanoconfined polymers and the number of chains irreversibly adsorbed onto nonrepulsive interfaces, e.g. the supporting substrate of thin polymer coatings, or nanofillers dispersed in polymer melts. Based on such a correlation, it has already been possible to tailor structural and dynamics properties - such as the glass transition temperature, the crystallization rate, the thermal expansion coefficients, the viscosity and the wettability - of nanomaterials by controlling the adsorption kinetics. This evidence indicates that irreversible adsorption affects nanoconfinement effects. More recently, also the opposite phenomenon was experimentally observed: nanoconfinement alters interfacial interactions and, consequently, also the number of chains adsorbed in equilibrium conditions. In this review we discuss this intriguing interplay between irreversible adsorption and nanoconfinement effects in ultrathin polymer films. After introducing the methods currently used to prepare adsorbed layers and to measure the number of irreversibly adsorbed chains, we analyze the models employed to describe the kinetics of adsorption in polymer melts. We then discuss the structure of adsorbed polymer layers, focusing on the complex macromolecular architecture of interfacial chains and on their thermal expansion; we examine the way in which the structure of the adsorbed layer affects the thermal glass transition temperature, vitrification, and crystallization. By analyzing segmental dynamics of 1D confined systems, we describe experiments to track the changes in density during adsorption. We conclude this review with an analysis of the impact of nanoconfinement on adsorption, and a perspective on future work where we also address the key ideas of irreversibility, equilibration and long-range interactions.
Collapse
Affiliation(s)
- Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium.
| |
Collapse
|
13
|
Nonque F, Sahut A, Jacquel N, Saint-Loup R, Woisel P, Potier J. Isosorbide monoacrylate: a sustainable monomer for the production of fully bio-based polyacrylates and thermosets. Polym Chem 2020. [DOI: 10.1039/d0py00957a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The radical homopolymerization of isosorbide monoacrylate (IMA) is studied to obtain transfer constants and fully bio-based thermosets.
Collapse
Affiliation(s)
- Florine Nonque
- Univ. Lille
- CNRS
- INRAE
- Centrale Lille
- UMR 8207 - UMET - Unité Matériaux et Transformations
| | | | | | | | - Patrice Woisel
- Univ. Lille
- CNRS
- INRAE
- Centrale Lille
- UMR 8207 - UMET - Unité Matériaux et Transformations
| | - Jonathan Potier
- Univ. Lille
- CNRS
- INRAE
- Centrale Lille
- UMR 8207 - UMET - Unité Matériaux et Transformations
| |
Collapse
|
14
|
Shi G, Guan Y, Liu G, Müller AJ, Wang D. Segmental Dynamics Govern the Cold Crystallization of Poly(lactic acid) in Nanoporous Alumina. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00542] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Guangyu Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Guan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Muanchan P, Kurose T, Ito H. Replication of Mesoscale Pore One-dimensional Nanostructures: Surface-induced Phase Separation of Polystyrene/Poly(vinyl alcohol) (PS/PVA) Blends. Polymers (Basel) 2019; 11:E1039. [PMID: 31212801 PMCID: PMC6630784 DOI: 10.3390/polym11061039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 01/18/2023] Open
Abstract
Mesoscale pore one-dimensional (1D) nanostructures, or vertically aligned porous nanostructures (VAPNs), have attracted attention with their excellent hydrophobic properties, ultra-high surface area, and high friction coefficient, compared to conventional vertically aligned nanostructures (VANs). In this study, we investigate the replication of VAPNs produced by the thermal nanoimprint process using anodic aluminum oxide (AAO2) templates (100 nm diameter). Polystyrene/poly(vinyl alcohol) (PS1/PVA) blends, prepared by the advanced melt-mixing process with an ultra-high shear rate, are used to investigate the formation of porosity at the nanometer scale. The results reveal that domain size and mass ratios of PVA precursors in the PS matrix play a dominant role in the interfacial interaction behavior between PS1-PVA-AAO2, on the obtained morphologies of the imprinted nanostructures. With a PVA nanodomain precursor (PS1/PVA 90/10 wt%), the integration of PVA nanodroplets on the AAO2 wall due to the hydrogen bonding that induces the phase separation between PS1-PVA results in the formation of VAPNs after removal of the PVA segment. However, in the case of PVA microdomain precursors (PS1/PVA 70/30 wt%), the structure transformation behavior of PS1 is induced by the Rayleigh instability between PVA encapsulated around the PS1 surfaces, resulting in the PS1 nanocolumns transforming into nanopeapods composed of nanorods and nanospheres.
Collapse
Affiliation(s)
- Paritat Muanchan
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Takashi Kurose
- Research Center for GREEN Materials and Advanced Processing (GMAP), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Hiroshi Ito
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
- Research Center for GREEN Materials and Advanced Processing (GMAP), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
16
|
Adrjanowicz K, Winkler R, Dzienia A, Paluch M, Napolitano S. Connecting 1D and 2D Confined Polymer Dynamics to Its Bulk Behavior via Density Scaling. ACS Macro Lett 2019; 8:304-309. [PMID: 35650833 DOI: 10.1021/acsmacrolett.8b01006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Under confinement, the properties of polymers can be much different from the bulk. Because of the potential applications in technology and hope to reveal fundamental problems related to the glass-transition, it is important to realize whether the nanoscale and macroscopic behavior of polymer glass-formers are related to each other in any simple way. In this work, we have addressed this issue by studying the segmental dynamics of poly(4-chlorostyrene) (P4ClS) in the bulk and upon geometrical confinement at the nanoscale level, in either one- (thin films on Al substrate) or two- (within alumina nanopores) dimensions. The results demonstrate that the segmental relaxation time, irrespective of the confinement size or its dimensionality, can be scaled onto a single curve when plotted versus ργ/T with the same single scaling exponent, γ = 3.1, obtained via measurements at high pressures in bulk. The implication is that the macro- and nanoscale confined polymer dynamics are intrinsically connected and governed by the same underlying rules.
Collapse
Affiliation(s)
- Karolina Adrjanowicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Roksana Winkler
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Andrzej Dzienia
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
- Institute of Chemistry, University of Silesia, Szkolna 9 1, 40-007 Katowice, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université libre de Bruxelles (ULB), CP 223, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| |
Collapse
|
17
|
Carneiro JO, Machado F, Pereira M, Teixeira V, Costa MF, Ribeiro A, Cavaco-Paulo A, Samantilleke AP. The influence of the morphological characteristics of nanoporous anodic aluminium oxide (AAO) structures on capacitive touch sensor performance: a biological application. RSC Adv 2018; 8:37254-37266. [PMID: 35557785 PMCID: PMC9088894 DOI: 10.1039/c8ra07490a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/29/2018] [Indexed: 01/10/2023] Open
Abstract
This work is devoted to the study of the influence of different anodic aluminium oxide (AAO) morphologies on the sensitivity and performance of an AAO-based capacitive touch sensor. The AAO structures were fabricated in a cylindrical homemade anodization cell made from a solid polycarbonate billet via a lathe machining process. The AAO morphologies were obtained from the anodization of Al foil by using three different types of electrolyte (sulphuric acid, oxalic acid and phosphoric acid) and their morphologies are reported and compared using scanning electron microscopy (SEM) micrographs and current–time characteristic curves. The sensors were fabricated by integrating the AAO structure with a nanotextured gold thin film deposited over the AAO layer by thermal evaporation, thus realizing a type of metal/insulator/metal parallel-plate capacitance sensor. It is demonstrated that AAO morphologies have influence on the performance of the AAO-based capacitive touch sensors. The variation of the capacitance of the sensors is investigated in this work for the AAO structures produced from anodization in an attempt to select anodizing conditions for a biological application aiming to detect small microorganisms such as bacterial colonies of Escherichia coli. This work is devoted to the study of the influence of different anodic aluminium oxide (AAO) morphologies on the sensitivity and performance of an AAO-based capacitive touch sensor.![]()
Collapse
Affiliation(s)
- J O Carneiro
- Centre of Physics, University of Minho Azurém Campus 4800-058 Guimarães Portugal
| | - F Machado
- Centre of Physics, University of Minho Azurém Campus 4800-058 Guimarães Portugal
| | - M Pereira
- Centre of Physics, University of Minho Azurém Campus 4800-058 Guimarães Portugal
| | - V Teixeira
- Centre of Physics, University of Minho Azurém Campus 4800-058 Guimarães Portugal
| | - M F Costa
- Centre of Physics, University of Minho Azurém Campus 4800-058 Guimarães Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering, University of Minho Gualtar Campus 4710-057 Braga Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho Gualtar Campus 4710-057 Braga Portugal
| | - A P Samantilleke
- Centre of Physics, University of Minho Azurém Campus 4800-058 Guimarães Portugal
| |
Collapse
|
18
|
Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Arzhakova OV, Dolgova AA, Kechek’yan PA, Rukhlya EG, Kechek’yan AS, Volynskii AL. The role of the scale factor in the structure-related mechanical behavior of glassy polymers. COLLOID JOURNAL 2017. [DOI: 10.1134/s1061933x17060035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Nieto Simavilla D, Panagopoulou A, Napolitano S. Characterization of Adsorbed Polymer Layers: Preparation, Determination of the Adsorbed Amount and Investigation of the Kinetics of Irreversible Adsorption. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Nieto Simavilla
- Laboratory of Polymer and Soft Matter Dynamics; Faculté des Sciences; Université libre de Bruxelles (ULB); Boulevard du Triomphe; Bâtiment NO Bruxelles 1050 Belgium
| | - Anna Panagopoulou
- Laboratory of Polymer and Soft Matter Dynamics; Faculté des Sciences; Université libre de Bruxelles (ULB); Boulevard du Triomphe; Bâtiment NO Bruxelles 1050 Belgium
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics; Faculté des Sciences; Université libre de Bruxelles (ULB); Boulevard du Triomphe; Bâtiment NO Bruxelles 1050 Belgium
| |
Collapse
|
21
|
Zhang W, Douglas JF, Starr FW. Effects of a “bound” substrate layer on the dynamics of supported polymer films. J Chem Phys 2017; 147:044901. [DOI: 10.1063/1.4994064] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Wengang Zhang
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, USA
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, USA
| |
Collapse
|
22
|
Braatz ML, Infantas Meléndez L, Sferrazza M, Napolitano S. Unexpected impact of irreversible adsorption on thermal expansion: Adsorbed layers are not that dead. J Chem Phys 2017; 146:203304. [DOI: 10.1063/1.4974834] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marie-Luise Braatz
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Bâtiment NO, Bruxelles 1050, Belgium
| | - Leslie Infantas Meléndez
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Bâtiment NO, Bruxelles 1050, Belgium
| | - Michele Sferrazza
- Département de Physique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Bâtiment NO, Bruxelles 1050, Belgium
| |
Collapse
|
23
|
Askar S, Wei T, Tan AW, Torkelson JM. Molecular weight dependence of the intrinsic size effect on T g in AAO template-supported polymer nanorods: A DSC study. J Chem Phys 2017; 146:203323. [PMID: 28571378 DOI: 10.1063/1.4978574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many studies have established a major effect of nanoscale confinement on the glass transition temperature (Tg) of polystyrene (PS), most commonly in thin films with one or two free surfaces. Here, we characterize smaller yet significant intrinsic size effects (in the absence of free surfaces or significant attractive polymer-substrate interactions) on the Tg and fragility of PS. Melt infiltration of various molecular weights (MWs) of PS into anodic aluminum oxide (AAO) templates is used to create nanorods supported on AAO with rod diameter (d) ranging from 24 to 210 nm. The Tg (both as Tg,onset and fictive temperature) and fragility values are characterized by differential scanning calorimetry. No intrinsic size effect is observed for 30 kg/mol PS in template-supported nanorods with d = 24 nm. However, effects on Tg are present for PS nanorods with Mn and Mw ≥ ∼175 kg/mol, with effects increasing in magnitude with increasing MW. For example, in 24-nm-diameter template-supported nanorods, Tg, rod - Tg, bulk = -2.0 to -2.5 °C for PS with Mn = 175 kg/mol and Mw = 182 kg/mol, and Tg, rod - Tg, bulk = ∼-8 °C for PS with Mn = 929 kg/mol and Mw = 1420 kg/mol. In general, reductions in Tg occur when d ≤ ∼2Rg, where Rg is the bulk polymer radius of gyration. Thus, intrinsic size effects are significant when the rod diameter is smaller than the diameter (2Rg) associated with the spherical volume pervaded by coils in bulk. We hypothesize that the Tg reduction occurs when chain segment packing frustration is sufficiently perturbed by confinement in the nanorods. This explanation is supported by observed reductions in fragility with the increasing extent of confinement. We also explain why these small intrinsic size effects do not contradict reports that the Tg-confinement effect in supported PS films with one free surface exhibits little or no MW dependence.
Collapse
Affiliation(s)
- Shadid Askar
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Tong Wei
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Anthony W Tan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - John M Torkelson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
24
|
Napolitano S, Glynos E, Tito NB. Glass transition of polymers in bulk, confined geometries, and near interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:036602. [PMID: 28134134 DOI: 10.1088/1361-6633/aa5284] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
When cooled or pressurized, polymer melts exhibit a tremendous reduction in molecular mobility. If the process is performed at a constant rate, the structural relaxation time of the liquid eventually exceeds the time allowed for equilibration. This brings the system out of equilibrium, and the liquid is operationally defined as a glass-a solid lacking long-range order. Despite almost 100 years of research on the (liquid/)glass transition, it is not yet clear which molecular mechanisms are responsible for the unique slow-down in molecular dynamics. In this review, we first introduce the reader to experimental methodologies, theories, and simulations of glassy polymer dynamics and vitrification. We then analyse the impact of connectivity, structure, and chain environment on molecular motion at the length scale of a few monomers, as well as how macromolecular architecture affects the glass transition of non-linear polymers. We then discuss a revised picture of nanoconfinement, going beyond a simple picture based on interfacial interactions and surface/volume ratio. Analysis of a large body of experimental evidence, results from molecular simulations, and predictions from theory supports, instead, a more complex framework where other parameters are relevant. We focus discussion specifically on local order, free volume, irreversible chain adsorption, the Debye-Waller factor of confined and confining media, chain rigidity, and the absolute value of the vitrification temperature. We end by highlighting the molecular origin of distributions in relaxation times and glass transition temperatures which exceed, by far, the size of a chain. Fast relaxation modes, almost universally present at the free surface between polymer and air, are also remarked upon. These modes relax at rates far larger than those characteristic of glassy dynamics in bulk. We speculate on how these may be a signature of unique relaxation processes occurring in confined or heterogeneous polymeric systems.
Collapse
Affiliation(s)
- Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | | | | |
Collapse
|
25
|
Zhang C, Li L, Wang X, Xue G. Stabilization of Poly(methyl methacrylate) Nanofibers with Core–Shell Structures Confined in AAO Templates by the Balance between Geometric Curvature, Interfacial Interactions, and Cooling Rate. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02469] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chen Zhang
- Key Laboratory of High Performance
Polymer Materials and Technology of Ministry of Education, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Linling Li
- Key Laboratory of High Performance
Polymer Materials and Technology of Ministry of Education, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaoliang Wang
- Key Laboratory of High Performance
Polymer Materials and Technology of Ministry of Education, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Gi Xue
- Key Laboratory of High Performance
Polymer Materials and Technology of Ministry of Education, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
26
|
Jeong SH, Im HL, Hong S, Park H, Baek J, Park DH, Kim S, Hong YK. Massive, eco-friendly, and facile fabrication of multi-functional anodic aluminum oxides: application to nanoporous templates and sensing platforms. RSC Adv 2017. [DOI: 10.1039/c6ra25201j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Massive, eco-friendly, and facile fabrications of AAOs are realized, which can be utilized as template for nanomaterials and sensing platform.
Collapse
Affiliation(s)
- Seok Hwan Jeong
- Department of Electronics and Radio Engineering
- Kyung Hee University
- Republic of Korea
| | - Hea Lin Im
- Department of Electronics and Radio Engineering
- Kyung Hee University
- Republic of Korea
| | - Seongin Hong
- Department of Electronics and Radio Engineering
- Kyung Hee University
- Republic of Korea
| | - Heekyeong Park
- Department of Electronics and Radio Engineering
- Kyung Hee University
- Republic of Korea
| | - Jongyeol Baek
- Department of Electronics and Radio Engineering
- Kyung Hee University
- Republic of Korea
| | - Dong Hyuk Park
- Department of Applied Organic Materials Engineering
- Inha University
- Incheon 402-751
- Republic of Korea
| | - Sunkook Kim
- Department of Electronics and Radio Engineering
- Kyung Hee University
- Republic of Korea
| | - Young Ki Hong
- Department of Electronics and Radio Engineering
- Kyung Hee University
- Republic of Korea
| |
Collapse
|
27
|
Tao Y, He F, Jin K, Wang J, Wang Y, Zhou J, Sun J, Fang Q. Facile conversion of plant oil (anethole) to a high-performance material. Polym Chem 2017. [DOI: 10.1039/c7py00047b] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anethole, a naturally occurring aromatic compound which can be extracted abundantly from plants like star anise, fennel and basil, has been conveniently transformed to a functional monomer in an overall yield of 81% via a two-step procedure.
Collapse
Affiliation(s)
- Yangqing Tao
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Science
- Shanghai
- PR China
| | - Fengkai He
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Science
- Shanghai
- PR China
| | - Kaikai Jin
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Science
- Shanghai
- PR China
| | - Jiajia Wang
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Science
- Shanghai
- PR China
| | - Yuanqiang Wang
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Science
- Shanghai
- PR China
| | - Junfeng Zhou
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Science
- Shanghai
- PR China
| | - Jing Sun
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Science
- Shanghai
- PR China
| | - Qiang Fang
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Science
- Shanghai
- PR China
| |
Collapse
|