1
|
Zhang J, Liu X, Zhang M, Zhang R, Ta HQ, Sun J, Wang W, Zhu W, Fang T, Jia K, Sun X, Zhang X, Zhu Y, Shao J, Liu Y, Gao X, Yang Q, Sun L, Li Q, Liang F, Chen H, Zheng L, Wang F, Yin W, Wei X, Yin J, Gemming T, Rummeli MH, Liu H, Peng H, Lin L, Liu Z. Fast synthesis of large-area bilayer graphene film on Cu. Nat Commun 2023; 14:3199. [PMID: 37268632 DOI: 10.1038/s41467-023-38877-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
Bilayer graphene (BLG) is intriguing for its unique properties and potential applications in electronics, photonics, and mechanics. However, the chemical vapor deposition synthesis of large-area high-quality bilayer graphene on Cu is suffering from a low growth rate and limited bilayer coverage. Herein, we demonstrate the fast synthesis of meter-sized bilayer graphene film on commercial polycrystalline Cu foils by introducing trace CO2 during high-temperature growth. Continuous bilayer graphene with a high ratio of AB-stacking structure can be obtained within 20 min, which exhibits enhanced mechanical strength, uniform transmittance, and low sheet resistance in large area. Moreover, 96 and 100% AB-stacking structures were achieved in bilayer graphene grown on single-crystal Cu(111) foil and ultraflat single-crystal Cu(111)/sapphire substrates, respectively. The AB-stacking bilayer graphene exhibits tunable bandgap and performs well in photodetection. This work provides important insights into the growth mechanism and the mass production of large-area high-quality BLG on Cu.
Collapse
Affiliation(s)
- Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Xiaoting Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Mengqi Zhang
- Beijing Graphene Institute, 100095, Beijing, P. R. China
- School of Material Science and Engineering, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, 300387, Tianjin, P. R. China
| | - Rui Zhang
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Huy Q Ta
- Leibniz Institute for Solid State and Materials Research Dresden, P.O. Box 270116, D-01171, Dresden, Germany
| | - Jianbo Sun
- Beijing Graphene Institute, 100095, Beijing, P. R. China
| | - Wendong Wang
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Wenqing Zhu
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, P. R. China
| | - Tiantian Fang
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Kaicheng Jia
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
| | - Xiucai Sun
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
| | - Xintong Zhang
- Beijing Graphene Institute, 100095, Beijing, P. R. China
| | - Yeshu Zhu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Jiaxin Shao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Yuchen Liu
- Beijing Graphene Institute, 100095, Beijing, P. R. China
| | - Xin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Qian Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
| | - Luzhao Sun
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Qin Li
- Beijing Graphene Institute, 100095, Beijing, P. R. China
| | - Fushun Liang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Heng Chen
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
| | - Liming Zheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China
- Beijing Graphene Institute, 100095, Beijing, P. R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Wanjian Yin
- Soochow Institute for Energy and Materials Innovations, Soochow University, 215006, Suzhou, P. R. China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, P. R. China
| | - Jianbo Yin
- Beijing Graphene Institute, 100095, Beijing, P. R. China
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research Dresden, P.O. Box 270116, D-01171, Dresden, Germany
| | - Mark H Rummeli
- Leibniz Institute for Solid State and Materials Research Dresden, P.O. Box 270116, D-01171, Dresden, Germany
- Soochow Institute for Energy and Materials Innovations, Soochow University, 215006, Suzhou, P. R. China
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland
- Institute of Environmental Technology, VŠB -Technical University of Ostrava, 17 Listopadu 15, Ostrava, 708 33, Czech Republic
| | - Haihui Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, 300387, Tianjin, P. R. China.
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China.
- Beijing Graphene Institute, 100095, Beijing, P. R. China.
| | - Li Lin
- School of Materials Science and Engineering, Peking University, 100871, Beijing, P. R. China.
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P. R. China.
- Beijing Graphene Institute, 100095, Beijing, P. R. China.
| |
Collapse
|