1
|
Dong M, Nouri R, Tang Z, Guan W. Morphology around Nanopores Fabricated by Laser-Assisted Dielectric Breakdown and Its Impact on Ion and DNA Transport and Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24747-24755. [PMID: 37163692 DOI: 10.1021/acsami.3c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Laser-assisted controlled dielectric breakdown (LaCBD) has emerged as an alternative to conventional CBD-based nanopore fabrication due to its localization capability, facilitated by the photothermal-induced thinning down in the hot spot. Here, we reported the potential impact of the laser on forming debris around the nanopore region in LaCBD. The debris was clearly observable by scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. We found that debris formation is a unique phenomenon in LaCBD that is not observable in the conventional CBD approach. We also found that the LaCBD-induced debris is more evident when the laser power and voltage stress are higher. Moreover, the debris is asymmetrically distributed on the top and bottom sides of the membrane. We also found unexpected rectified ionic and molecular transport in those LaCBD nanopores with debris. Based on these observations, we developed and validated a model describing the debris formation kinetics in LaCBD by considering the generation, diffusion, drift, and gravity in viscous mediums. These findings indicate that while laser aids in nanopore localization, precautions should be taken due to the potential formation of debris and rectification of molecular transport. This study provides valuable insights into the kinetics of LaCBD and the characteristics of the LaCBD nanopore.
Collapse
Affiliation(s)
- Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Reza Nouri
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Jansson M, Ishikawa F, Chen WM, Buyanova IA. Designing Semiconductor Nanowires for Efficient Photon Upconversion via Heterostructure Engineering. ACS NANO 2022; 16:12666-12676. [PMID: 35876227 PMCID: PMC9413407 DOI: 10.1021/acsnano.2c04287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Energy upconversion via optical processes in semiconductor nanowires (NWs) is attractive for a variety of applications in nano-optoelectronics and nanophotonics. One of the main challenges is to achieve a high upconversion efficiency and, thus, a wide dynamic range of device performance, allowing efficient upconversion even under low excitation power. Here, we demonstrate that the efficiency of energy upconversion via two-photon absorption (TPA) can be drastically enhanced in core/shell NW heterostructures designed to provide a real intermediate TPA step via the band states of the narrow-bandgap region with a long carrier lifetime, fulfilling all the necessary requirements for high-efficiency two-step TPA. We show that, in radial GaAs(P)/GaNAs(P) core/shell NW heterostructures, the upconversion efficiency increases by 500 times as compared with that of the constituent materials, even under an excitation power as low as 100 mW/cm2 that is comparable to the 1 sun illumination. The upconversion efficiency can be further improved by 8 times through engineering the electric-field distribution of the excitation light inside the NWs so that light absorption is maximized within the desired region of the heterostructure. This work demonstrates the effectiveness of our approach in providing efficient photon upconversion by exploring core/shell NW heterostructures, yielding an upconversion efficiency being among the highest reported in semiconductor nanostructures. Furthermore, our work provides design guidelines for enhancing efficiency of energy upconversion in NW heterostructures.
Collapse
Affiliation(s)
- Mattias Jansson
- Department
of Physics, Chemistry and Biology, Linköping
University, SE-58183 Linköping, Sweden
| | - Fumitaro Ishikawa
- Graduate
School of Science and Engineering, Ehime
University, 790-8577 Matsuyama, Japan
| | - Weimin M. Chen
- Department
of Physics, Chemistry and Biology, Linköping
University, SE-58183 Linköping, Sweden
| | - Irina A. Buyanova
- Department
of Physics, Chemistry and Biology, Linköping
University, SE-58183 Linköping, Sweden
| |
Collapse
|
3
|
Pettinari G, Marotta G, Biccari F, Polimeni A, Felici M. Tailoring the optical properties of dilute nitride semiconductors at the nanometer scale. NANOTECHNOLOGY 2021; 32:185301. [PMID: 33503600 DOI: 10.1088/1361-6528/abe073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report on the innovative approaches we developed for the fabrication of site-controlled semiconductor nanostructures [e.g. quantum dots (QDs), nanowires], based on the spatially selective incorporation and/or removal of hydrogen in dilute nitride semiconductor alloys [e.g. Ga(AsN) and (InGa)(AsN)]. In such systems, the formation of stable nitrogen-hydrogen complexes removes the effects nitrogen has on the alloy properties, which in turn paves the way to the direct engineering of the material's electronic-and, thus, optical-properties: not only the bandgap energy, but also the refractive index and the polarization properties of the system can indeed be tailored with high precision and in a reversible manner. Here, lithographic approaches and/or plasmon-assisted optical irradiation-coupled to the ultra-sharp diffusion profile of hydrogen in dilute nitrides-are employed to control the hydrogen implantation and/or removal process at a nanometer scale. This results in a highly deterministic control of the spatial and spectral properties of the fabricated nanostructures, eventually obtaining semiconductor nanowires with controlled polarization properties, as well as site-controlled QDs with an extremely high control on their spatial and spectral properties. The nanostructures fabricated with these techniques, whose optical properties have also been simulated by finite-element-method calculations, are naturally suited for a deterministic coupling in optical nanocavities (i.e. photonic crystal cavities and circular Bragg resonators) and are therefore of potential interest for emerging quantum technologies.
Collapse
Affiliation(s)
- Giorgio Pettinari
- Institute for Photonics and Nanotechnologies (CNR-IFN), National Research Council, Via Cineto Romano 42, I-00156 Roma, Italy
| | - Gianluca Marotta
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, I-00185 Roma, Italy
| | - Francesco Biccari
- Department of Physics and Astronomy, University of Florence, via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - Antonio Polimeni
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, I-00185 Roma, Italy
| | - Marco Felici
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, I-00185 Roma, Italy
| |
Collapse
|
4
|
Jiang M, Wan P, Tang K, Liu M, Kan C. An electrically driven whispering gallery polariton microlaser. NANOSCALE 2021; 13:5448-5459. [PMID: 33683235 DOI: 10.1039/d0nr08168j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Near-infrared micro/nanolaser devices utilizing low-dimensional semiconductors can provide essential building blocks to achieve integrated optoelectronic devices and circuitry for advanced functionalities and are compatible with on-chip technologies. Although significant progress has been made through using narrow-band semiconductor micro/nanostructures to realize near-infrared stimulated radiation at room temperature, severe challenges still remain involving much lower quantum efficiencies and higher auger recombination. Herein, we report an experimental realization of a current-injection semiconductor polariton device made of a ZnO microwire via Ga-doping (ZnO:Ga MW) and p-type GaAs template. The device can emit polaritonic illumination directly from sharp edges of the hexagonal MW. The experimental results of angle-resolved electroluminescence measurements reveal a typical anticrossing feature between excitons and cavity modes, unambiguous evidence of the strong exciton-polariton coupling, with corresponding Rabi splitting energy extracted to be about 195 meV. As the applied bias goes above a certain value, electrically driven whispering gallery lasing action was achieved in the near-infrared spectrum, and the lasing features can be assigned to the exciton-polariton effect. The results not only can afford insights into the development of low-threshold coherent light sources via the exciton-polariton effect, but also can expand the fabrication of low-dimensional, near-infrared microlaser devices.
Collapse
Affiliation(s)
- Mingming Jiang
- College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, P. R. China.
| | - Peng Wan
- College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, P. R. China.
| | - Kai Tang
- College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, P. R. China.
| | - Maosheng Liu
- College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, P. R. China.
| | - Caixia Kan
- College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, P. R. China.
| |
Collapse
|
5
|
Zhang B, Jansson M, Shimizu Y, Chen WM, Ishikawa F, Buyanova IA. Self-assembled nanodisks in coaxial GaAs/GaAsBi/GaAs core-multishell nanowires. NANOSCALE 2020; 12:20849-20858. [PMID: 33043329 DOI: 10.1039/d0nr05488g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
III-V semiconductor nanowires (NWs), such as those based on GaAs, are attractive for advanced optoelectronic and nanophotonic applications. The addition of Bi into GaAs offers a new avenue to enhance the near-infrared device performance and to add new functionalities, by utilizing the remarkable valence band structure and the giant bowing in the bandgap energy. Here, we report that alloying with Bi also induces the formation of optically-active self-assembled nanodisks caused by Bi segregation. They are located in the vicinity to the 112 corners of the GaAsBi shell and are restricted to twin planes. Furthermore, the Bi composition in the disks is found to correlate with their lateral thickness. The higher Bi composition in the disks with respect to the surrounding matrix provides a strong confinement for excitons along the NW axis, giving rise to narrow emission lines (<450 μeV) with the predominant emission polarization orthogonal to the NW axis. Our findings, therefore, open a new possibility to fabricate self-assembled quantum structures by combining advantages of dilute bismide alloys and lattice engineering in nanowires.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden.
| | - Mattias Jansson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden.
| | - Yumiko Shimizu
- Toray Research Center, 3-3-7 Sonoyama, Otsu, Shiga 520-8567, Japan
| | - Weimin M Chen
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden.
| | - Fumitaro Ishikawa
- Graduate School of Science and Engineering, Ehime University, Ehime 790-8577, Matsuyama, Japan.
| | - Irina A Buyanova
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
6
|
Balagula RM, Jansson M, Yukimune M, Stehr JE, Ishikawa F, Chen WM, Buyanova IA. Effects of thermal annealing on localization and strain in core/multishell GaAs/GaNAs/GaAs nanowires. Sci Rep 2020; 10:8216. [PMID: 32427905 PMCID: PMC7237432 DOI: 10.1038/s41598-020-64958-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/27/2020] [Indexed: 11/10/2022] Open
Abstract
Core/shell nanowire (NW) heterostructures based on III-V semiconductors and related alloys are attractive for optoelectronic and photonic applications owing to the ability to modify their electronic structure via bandgap and strain engineering. Post-growth thermal annealing of such NWs is often involved during device fabrication and can also be used to improve their optical and transport properties. However, effects of such annealing on alloy disorder and strain in core/shell NWs are not fully understood. In this work we investigate these effects in novel core/shell/shell GaAs/GaNAs/GaAs NWs grown by molecular beam epitaxy on (111) Si substrates. By employing polarization-resolved photoluminescence measurements, we show that annealing (i) improves overall alloy uniformity due to suppressed long-range fluctuations in the N composition; (ii) reduces local strain within N clusters acting as quantum dot emitters; and (iii) leads to partial relaxation of the global strain caused by the lattice mismatch between GaNAs and GaAs. Our results, therefore, underline applicability of such treatment for improving optical quality of NWs from highly-mismatched alloys. They also call for caution when using ex-situ annealing in strain-engineered NW heterostructures.
Collapse
Affiliation(s)
- Roman M Balagula
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Mattias Jansson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Mitsuki Yukimune
- Graduate School of Science and Engineering, Ehime University, 790-8577, Matsuyama, Japan
| | - Jan E Stehr
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Fumitaro Ishikawa
- Graduate School of Science and Engineering, Ehime University, 790-8577, Matsuyama, Japan
| | - Weimin M Chen
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Irina A Buyanova
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
7
|
Jansson M, Francaviglia L, La R, Balagula R, Stehr JE, Tu CW, Fontcuberta I Morral A, Chen WM, Buyanova IA. Increasing N content in GaNAsP nanowires suppresses the impact of polytypism on luminescence. NANOTECHNOLOGY 2019; 30:405703. [PMID: 31242464 DOI: 10.1088/1361-6528/ab2cdb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cathodoluminescence (CL) and micro-photoluminescence spectroscopies are employed to investigate effects of structural defects on carrier recombination in GaNAsP nanowires (NWs) grown by molecular beam epitaxy on Si substrates. In the NWs with a low N content of 0.08%, these defects are found to promote non-radiative (NR) recombination, which causes spatial variation of the CL peak position and its intensity. Unexpectedly, these detrimental effects can be suppressed even by a small increase in the nitrogen composition from 0.08% to 0.12%. This is attributed to more efficient trapping of excited carriers/excitons to the localized states promoted by N-induced localization and also the presence of other NR channels. At room temperature, the structural defects no longer dominate in carrier recombination even in the NWs with the lower nitrogen content, likely due to increasing importance of other recombination channels. Our work underlines the need in eliminating important thermally activated NR defects, other than the structural defects, for future optoelectronic applications of these NWs.
Collapse
Affiliation(s)
- Mattias Jansson
- Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang B, Huang Y, Stehr JE, Chen PP, Wang XJ, Lu W, Chen WM, Buyanova IA. Band Structure of Wurtzite GaBiAs Nanowires. NANO LETTERS 2019; 19:6454-6460. [PMID: 31424943 DOI: 10.1021/acs.nanolett.9b02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on the first successful growth of wurtzite (WZ) GaBiAs nanowires (NWs) and reveal the effects of Bi incorporation on the electronic band structure by using polarization-resolved optical spectroscopies performed on individual NWs. Experimental evidence of a decrease in the band-gap energy and an upward shift of the topmost three valence subbands upon the incorporation of Bi atoms is provided, whereas the symmetry and ordering of the valence band states remain unchanged, that is, Γ9, Γ7, and Γ7 within the current range of Bi compositions. The extraordinary valence band structure of WZ GaBiAs NWs is explained by anisotropic hybridization and anticrossing between p-like Bi states and the extended valence band states of host WZ GaAs. Moreover, the incorporation of Bi into GaAs is found to significantly reduce the temperature sensitivity of the band-gap energy in WZ GaBiAs NWs. Our work therefore demonstrates that utilizing dilute bismide alloys provides new avenues for band-gap engineering and thus photonic engineering with NWs.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Physics, Chemistry and Biology , Linköping University , S-581 83 Linköping , Sweden
- State Key Laboratory of Infrared Physics , Shanghai Institute of Technical Physics, Chinese Academy of Sciences , Shanghai 200083 , China
| | - Yuqing Huang
- Department of Physics, Chemistry and Biology , Linköping University , S-581 83 Linköping , Sweden
| | - Jan Eric Stehr
- Department of Physics, Chemistry and Biology , Linköping University , S-581 83 Linköping , Sweden
| | - Ping-Ping Chen
- State Key Laboratory of Infrared Physics , Shanghai Institute of Technical Physics, Chinese Academy of Sciences , Shanghai 200083 , China
| | - Xing-Jun Wang
- State Key Laboratory of Infrared Physics , Shanghai Institute of Technical Physics, Chinese Academy of Sciences , Shanghai 200083 , China
| | - W Lu
- State Key Laboratory of Infrared Physics , Shanghai Institute of Technical Physics, Chinese Academy of Sciences , Shanghai 200083 , China
| | - Weimin M Chen
- Department of Physics, Chemistry and Biology , Linköping University , S-581 83 Linköping , Sweden
| | - Irina A Buyanova
- Department of Physics, Chemistry and Biology , Linköping University , S-581 83 Linköping , Sweden
| |
Collapse
|
9
|
Buyanova IA, Chen WM. Dilute nitrides-based nanowires-a promising platform for nanoscale photonics and energy technology. NANOTECHNOLOGY 2019; 30:292002. [PMID: 30933933 DOI: 10.1088/1361-6528/ab1516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dilute nitrides are novel III-V-N semiconductor alloys promising for a great variety of applications ranging from nanoscale light emitters and solar cells to energy production via photoelectrochemical reactions and to nano-spintronics. These alloys have become available in the one-dimensional geometry only most recently, thanks to the advances in the nanowire (NW) growth utilizing molecular beam epitaxy. In this review we will summarize growth approaches currently utilized for the fabrication of such novel dilute nitride-based NWs, discuss their structural, defect-related and optical properties, as well as provide several examples of their potential applications.
Collapse
|
10
|
Yukimune M, Fujiwara R, Mita T, Tsuda N, Natsui J, Shimizu Y, Jansson M, Balagula R, Chen WM, Buyanova IA, Ishikawa F. Molecular beam epitaxial growth of dilute nitride GaNAs and GaInNAs nanowires. NANOTECHNOLOGY 2019; 30:244002. [PMID: 30794991 DOI: 10.1088/1361-6528/ab0974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report the growth of dilute nitride GaNAs and GaInNAs core-multishell nanowires (NWs) using molecular beam epitaxy assisted by a plasma source. Using the self-catalyst vapor-liquid-solid growth mode, these NWs were grown on Si(111) and silicon on insulator substrates. The GaNAs and GaInNAs shells contain nitrogen up to 3%. Axial cross-sectional scanning transmission electron microscopy measurements and energy-dispersive x-ray spectrometry confirm the formation of the core-multishell NW structure. We obtained high-quality GaNAs NWs with nitrogen compositions up to 2%. On the other hand, GaNAs containing 3% nitrogen, and GaInNAs NWs, show distorted structures; moreover, the optical emissions seem to be related to defects. Further optimisations of the growth conditions will improve these properties, promising future applications in nanoscale optoelectronics.
Collapse
Affiliation(s)
- M Yukimune
- Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Steidl M, Schwarzburg K, Galiana B, Kups T, Supplie O, Kleinschmidt P, Lilienkamp G, Hannappel T. MOVPE growth of GaP/GaPN core-shell nanowires: N incorporation, morphology and crystal structure. NANOTECHNOLOGY 2019; 30:104002. [PMID: 30523951 DOI: 10.1088/1361-6528/aaf607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dilute nitride III-V nanowires (NWs) possess great potential as building blocks in future optoelectronical and electrochemical devices. Here, we provide evidence for the growth of GaP/GaPN core-shell NWs via metalorganic vapor phase epitaxy, both on GaP(111)B and on GaP/Si(111) hetero-substrates. The NW morphology meets the common needs for use in applications, i.e. they are straight and vertically oriented to the substrate as well as homogeneous in length. Moreover, no parasitical island growth is observed. Nitrogen was found to be incorporated on group V sites as determined from transmission electron microscopy (TEM) and Raman spectroscopy. Together with the incorporation of N, the NWs exhibit strong photoluminescence in the visible range, which we attribute to radiative recombination at N-related deep states. Independently of the N incorporation, a peculiar facet formation was found, with {110} facets at the top and {112} at the bottom of the NWs. TEM reveals that this phenomenon is related to different stacking fault densities within the zinc blende structure, which lead to different effective surface energies for the bottom and the top of the NWs.
Collapse
Affiliation(s)
- Matthias Steidl
- Department of Photovoltaics, Institute of Physics and Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau, D-98693, Ilmenau, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Steidl M, Wu M, Peh K, Kleinschmidt P, Spiecker E, Hannappel T. Impact of N Incorporation on VLS Growth of GaP(N) Nanowires Utilizing UDMH. NANOSCALE RESEARCH LETTERS 2018; 13:417. [PMID: 30594986 PMCID: PMC6311168 DOI: 10.1186/s11671-018-2833-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
III-V nanowires (NWs) possess great potential for use in future semiconductor technology. Alloying with dilute amounts of nitrogen provides further flexibility in tuning their material properties. In this study, we report on successful in situ nitrogen incorporation into GaP(N) NWs during growth via the Au-catalyzed vapor-liquid-solid (VLS) mechanism. The impact of the nitrogen precursur unsymmetrical dimethyl hydrazine (UDMH) on morphology was found to be overall beneficial as it strongly reduces tapering. Analysis of the crystal structure of NWs with and without N reveals zinc blende structure with an intermediate amount of stacking faults (SF). Interestingly, N incorporation leads to segments completely free of SFs, which are related to dislocations transverse to the growth direction.
Collapse
Affiliation(s)
- Matthias Steidl
- Department of Photovoltaics, Institute of Physics and Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau|, 98693 Ilmenau, Germany
| | - Mingjian Wu
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Katharina Peh
- Department of Photovoltaics, Institute of Physics and Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau|, 98693 Ilmenau, Germany
| | - Peter Kleinschmidt
- Department of Photovoltaics, Institute of Physics and Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau|, 98693 Ilmenau, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Thomas Hannappel
- Department of Photovoltaics, Institute of Physics and Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau|, 98693 Ilmenau, Germany
| |
Collapse
|
13
|
Chen S, Jansson M, Stehr JE, Huang Y, Ishikawa F, Chen WM, Buyanova IA. Dilute Nitride Nanowire Lasers Based on a GaAs/GaNAs Core/Shell Structure. NANO LETTERS 2017; 17:1775-1781. [PMID: 28170267 DOI: 10.1021/acs.nanolett.6b05097] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanowire (NW) lasers operating in the near-infrared spectral range are of significant technological importance for applications in telecommunications, sensing, and medical diagnostics. So far, lasing within this spectral range has been achieved using GaAs/AlGaAs, GaAs/GaAsP, and InGaAs/GaAs core/shell NWs. Another promising III-V material, not yet explored in its lasing capacity, is the dilute nitride GaNAs. In this work, we demonstrate, for the first time, optically pumped lasing from the GaNAs shell of a single GaAs/GaNAs core/shell NW. The characteristic "S"-shaped pump power dependence of the lasing intensity, with the concomitant line width narrowing, is observed, which yields a threshold gain, gth, of 3300 cm-1 and a spontaneous emission coupling factor, β, of 0.045. The dominant lasing peak is identified to arise from the HE21b cavity mode, as determined from its pronounced emission polarization along the NW axis combined with theoretical calculations of lasing threshold for guided modes inside the nanowire. Even without intentional passivation of the NW surface, the lasing emission can be sustained up to 150 K. This is facilitated by the improved surface quality due to nitrogen incorporation, which partly suppresses the surface-related nonradiative recombination centers via nitridation. Our work therefore represents the first step toward development of room-temperature infrared NW lasers based on dilute nitrides with extended tunability in the lasing wavelength.
Collapse
Affiliation(s)
- Shula Chen
- Department of Physics, Chemistry and Biology, Linköping University , 58183, Linköping, Sweden
| | - Mattias Jansson
- Department of Physics, Chemistry and Biology, Linköping University , 58183, Linköping, Sweden
| | - Jan E Stehr
- Department of Physics, Chemistry and Biology, Linköping University , 58183, Linköping, Sweden
| | - Yuqing Huang
- Department of Physics, Chemistry and Biology, Linköping University , 58183, Linköping, Sweden
| | - Fumitaro Ishikawa
- Graduate School of Science and Engineering, Ehime University , Matsuyama 790-8577, Japan
| | - Weimin M Chen
- Department of Physics, Chemistry and Biology, Linköping University , 58183, Linköping, Sweden
| | - Irina A Buyanova
- Department of Physics, Chemistry and Biology, Linköping University , 58183, Linköping, Sweden
| |
Collapse
|