1
|
Playing with sizes and shapes of colloidal particles via dry etching methods. Adv Colloid Interface Sci 2022; 299:102538. [PMID: 34906837 DOI: 10.1016/j.cis.2021.102538] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Monolayers of self-assembled quasi-spherical colloidal particles are essential building blocks in the field of materials science and engineering. More typically, they are used as a template for the fabrication of nanostructures if they serve, for instance, as a mask for deposition of new material on the surface on which particles are assembled or for etching of the material underneath; in this case, they are removed afterwards. This is what occurs in colloidal or nanosphere lithography. In some other cases, they are not used as a sacrificial material but they are incorporated in the final structure because they are inherently interesting for their properties. Independently of their specific use and application, different strategies have been devised in order to modify size and shape of colloidal particles, so as to enrich the variety of attainable patterns and to tailor the properties of the final structures and materials. In this review, we will focus on one of the most widespread methods to shape spherical colloidal particles, i.e. dry etching techniques. We will follow the development of such approaches until recent days, so as to trace an extensive panorama of the diverse parameters that can be harnessed to achieve specific morphological changes and highlight the characteristic features of the variants of this method. We will finally discuss how particles modified via dry etching can be used for patterning or can be resuspended in solvents for very diverse applications.
Collapse
|
2
|
Zhong K, Yu W, de Coene Y, Yamada A, Krylychkina O, Jooken S, Deschaume O, Bartic C, Clays K. Dual photonic bandgap hollow sphere colloidal photonic crystals for real-time fluorescence enhancement in living cells. Biosens Bioelectron 2021; 194:113577. [PMID: 34481238 DOI: 10.1016/j.bios.2021.113577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
To overcome the problems of refractive index matching and increased disorder when working with traditional heterostructure colloidal photonic crystals (CPCs) with dual or multiple photonic bandgaps (PBGs) for fluorescence enhancement in water, we propose the use of a chemical heterostructure in hollow sphere CPCs (HSCPCs). A partial chemical modification of the HSCPC creates a large contrast in wettability to induce the heterostructure, while the hollow spheres increase the refractive index difference when used in aqueous environment. With the platform, fluorescence enhancement reaches around 160 times in solution, and 72 times (signal-to-background ratio ~7 times) in cells during proof-of-concept live cardiomyocyte contractility experiments. Such photonic platform can be further exploited for chemical sensing, bioassays, and environmental monitoring. Moreover, the introduction of chemical heterostructures provides new design principles for functionalized photonic devices.
Collapse
Affiliation(s)
- Kuo Zhong
- Laboratory for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium.
| | - Wei Yu
- Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Yovan de Coene
- Laboratory for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Atsushi Yamada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | | | - Stijn Jooken
- Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Olivier Deschaume
- Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Carmen Bartic
- Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Koen Clays
- Laboratory for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium.
| |
Collapse
|
3
|
Zhu C, Wang H, Guan C. Recent progress on hollow array architectures and their applications in electrochemical energy storage. NANOSCALE HORIZONS 2020; 5:1188-1199. [PMID: 32661545 DOI: 10.1039/d0nh00332h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The structural design of electrode materials is one of the most important factors that determines the electrochemical performance of energy storage devices. In recent years, hollow micro-/nanoarray structures have been widely explored for energy applications due to their unique structural advantages. Their complex hollow interior and shell arrays enable fast ion diffusion/transport, provide abundant active sites and accommodate volume changes. Moreover, the direct contact of hollow arrays with substrates enhances the mechanical stability during long-term cycling. To date, huge progress has been achieved in the rational design of various hollow array architectures. However, a review on this topic has been rarely reported. Herein, the multifunctional merits and typical synthetic strategies for hollow array structures are analyzed in detail. Furthermore, their applications in electrochemical energy storage (such as supercapacitors and batteries) are summarized. The development and challenges of hollow arrays in terms of substrates, technique improvement and material innovation are discussed. Finally, their applications for energy storage and conversion are prospected.
Collapse
Affiliation(s)
- Chenyu Zhu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129, P. R. China.
| | | | | |
Collapse
|
4
|
Nouri-Goushki M, Sharma A, Sasso L, Zhang S, Van der Eerden BCJ, Staufer U, Fratila-Apachitei LE, Zadpoor AA. Submicron Patterns-on-a-Chip: Fabrication of a Microfluidic Device Incorporating 3D Printed Surface Ornaments. ACS Biomater Sci Eng 2019; 5:6127-6136. [DOI: 10.1021/acsbiomaterials.9b01155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mahdiyeh Nouri-Goushki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Abhishek Sharma
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Luigi Sasso
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Shuang Zhang
- Department of Internal Medicine, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Bram C. J. Van der Eerden
- Department of Internal Medicine, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Urs Staufer
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
5
|
Abstract
Colloidal transformation based on simple physicochemical processes has produced a wide variety of functional structures for different applications. But the lack of local selectivity of conventional transformation methods makes the fabrication of nanodevices with desired optical properties challenging. Here, we use a laser beam to transform spherical polystyrene (PS) beads into bull's eye-shaped nanopatterns or concentric nanorings, depending on the time of irradiation. The final morphologies are dependent on the size of the PS beads and the dielectric nature of the substrates. The simulated near field features show that it is the selective hollowing of PS beads that results in collapsing and buckling of the shells. This understanding provides a new route towards unconventional colloidal nanostructures and defect engineering in 2D photonic crystals that can be locally and selectively controlled by light.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, China.
| | | |
Collapse
|
6
|
Ahmed R, Yetisen AK, Khoury AE, Butt H. Printable ink lenses, diffusers, and 2D gratings. NANOSCALE 2017; 9:266-276. [PMID: 27906403 PMCID: PMC6089092 DOI: 10.1039/c6nr07841a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/22/2016] [Indexed: 05/18/2023]
Abstract
Advances in holography have led to applications including data storage, displays, security labels, and colorimetric sensors. However, existing top-down approaches for the fabrication of holographic devices are complex, expensive, and expertise dependent, limiting their use in practical applications. Here, ink-based holographic devices have been created for a wide range of applications in diffraction optics. A single pulse of a 3.5 ns Nd:YAG laser allowed selective ablation of ink to nanofabricate planar optical devices. The practicality of this method is demonstrated by fabricating ink-based diffraction gratings, 2D holographic patterns, optical diffusers, and Fresnel zone plate (FZP) lenses by using the ink. The fabrication processes were rationally designed using predictive computational modeling and the devices were fabricated within a few minutes demonstrating amenability for large scale printable optics through industrial manufacturing. It is anticipated that ink will be a promising diffraction optical material for the rapid printing of low-cost planar nanophotonic devices.
Collapse
Affiliation(s)
- Rajib Ahmed
- Nanotechnology Laboratory
, School of Engineering
, University of Birmingham
,
Birmingham B15 2TT
, UK
.
; Tel: +44 (0)1214158623
| | - Ali K. Yetisen
- Harvard Medical School and Wellman Center for Photomedicine
, Massachusetts General Hospital
,
65 Landsdowne Street
, Cambridge
, MA
02139
, USA
- Harvard-MIT Division of Health Sciences and Technology
, Massachusetts Institute of Technology
,
Cambridge
, MA
02139
, USA
| | - Anthony El Khoury
- Nanotechnology Laboratory
, School of Engineering
, University of Birmingham
,
Birmingham B15 2TT
, UK
.
; Tel: +44 (0)1214158623
| | - Haider Butt
- Nanotechnology Laboratory
, School of Engineering
, University of Birmingham
,
Birmingham B15 2TT
, UK
.
; Tel: +44 (0)1214158623
| |
Collapse
|