1
|
Bai YY, Feng ZT, Yang YJ, Yang XY, Zhang ZL. Current Lifetime of Single-Nanoparticle Collision for Sizing Nanoparticles. Anal Chem 2021; 94:1302-1307. [PMID: 34957818 DOI: 10.1021/acs.analchem.1c04502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate size analysis of nanoparticles (NPs) is vital for nanotechnology. However, this cannot be realized based on conventional single-nanoparticle collision (SNC) because the current intensity, a thermodynamic parameter of SNC for sizing NPs, is always smaller than the theoretical value due to the effect of NP movements on the electrode surface. Herein, a size-dependent dynamic parameter of SNC, current lifetime, which refers to the time that the current intensity decays to 1/e of the original value, was originally utilized to distinguish differently sized NPs. Results showed that the current lifetime increased with NP size. After taking the current lifetime into account rather than the current intensity, the overlap rates for the peak-type current transients of differently sized Pt NPs (10 and 15 nm) and Au NPs (18 and 35 nm) reduced from 73 and 7% to 45 and 0%, respectively, which were closer to the theoretical values (29 and 0%). Hence, the proposed SNC dynamics-based method holds great potential for developing reliable electrochemical approaches to evaluate NP sizes accurately.
Collapse
Affiliation(s)
- Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Tao Feng
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
2
|
Zhu L, Zhang S, Zhang H, Dong L, Cong Y, Sun S, Sun X. Polysaccharides composite materials for rapid hemostasis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Pringkasemchai A, Hoshyargar F, Lertanantawong B, O'Mullane AP. Lightweight ITO Electrodes Decorated with Gold Nanostructures for Electrochemical Applications. ELECTROANAL 2019. [DOI: 10.1002/elan.201900152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Angkoonna Pringkasemchai
- Nanoscience and Nanotechnology Graduate Program King Mongkut's University of Technology Thonburi Bangkok 10140 Thailand
| | - Faegheh Hoshyargar
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) GPO Box 2434 Brisbane QLD 4001 Australia
| | - Benchaporn Lertanantawong
- Nanoscience and Nanotechnology Graduate Program King Mongkut's University of Technology Thonburi Bangkok 10140 Thailand
- Department of Biomedical Engineering Mahidol University Nakhon Pathom 73170 Thailand
| | - Anthony P. O'Mullane
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) GPO Box 2434 Brisbane QLD 4001 Australia
| |
Collapse
|
4
|
Kästner C, Saloga PEJ, Thünemann AF. Kinetic monitoring of glutathione-induced silver nanoparticle disintegration. NANOSCALE 2018; 10:11485-11490. [PMID: 29888371 DOI: 10.1039/c8nr02369g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report on etching of polyacrylic acid-stabilised silver nanoparticles in the presence of glutathione (GSH). The initial particles with a radius of 3.2 nm and consisting of ∼8100 silver atoms dissolve in a two-step reaction mechanism while in parallel smaller silver particles with a radius of 0.65 nm and consisting of 60 to 70 silver atoms were formed. The kinetics of the etching of the initial particles, accompanied by formation of smaller silver particles was interpreted based on in situ, time-resolved small-angle X-ray scattering (SAXS) experiments.
Collapse
Affiliation(s)
- Claudia Kästner
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | | | | |
Collapse
|
5
|
Ngamchuea K, Batchelor-McAuley C, Compton RG. The fate of silver nanoparticles in authentic human saliva. Nanotoxicology 2018; 12:305-311. [PMID: 29451053 DOI: 10.1080/17435390.2018.1438680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The physicochemical properties of silver nanoparticles (AgNPs) in human whole saliva are investigated herein. In authentic saliva samples, AgNPs exhibit a great stability with over 70% of the nanomaterial remaining intact after a 24-h incubation in the presence of ∼0.3 mM dissolved oxygen. The small loss of AgNPs from the saliva sample has been demonstrated to be a result of two processes: agglomeration/aggregation (not involving oxygen) and oxidative dissolution of AgNPs (assisted by oxygen). In authentic saliva, AgNPs are also shown to be more inert both chemically (silver oxidative dissolution) and electrochemically (electron transfer at an electrode) than in synthetic saliva or aqueous electrolytes. The results thus predict based on the chemical persistence (over a 24-h study) of AgNPs in saliva and hence the minimal release of hazardous Ag+ and reactive oxygen species that the AgNPs are less likely to cause serious harm to the oral cavity but this persistence may enable their transport to other environments.
Collapse
Affiliation(s)
- Kamonwad Ngamchuea
- a Department of Chemistry, Physical and Theoretical Chemistry Laboratory , University of Oxford , Oxford , UK
| | | | - Richard G Compton
- a Department of Chemistry, Physical and Theoretical Chemistry Laboratory , University of Oxford , Oxford , UK
| |
Collapse
|
6
|
Sokolov SV, Eloul S, Kätelhön E, Batchelor-McAuley C, Compton RG. Electrode-particle impacts: a users guide. Phys Chem Chem Phys 2018; 19:28-43. [PMID: 27918031 DOI: 10.1039/c6cp07788a] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present a comprehensive guide to nano-impact experiments, in which we introduce newcomers to this rapidly-developing field of research. Central questions are answered regarding required experimental set-ups, categories of materials that can be detected, and the theoretical frameworks enabling the analysis of experimental data. Commonly-encountered issues are considered and presented alongside methods for their solutions.
Collapse
Affiliation(s)
- Stanislav V Sokolov
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Shaltiel Eloul
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Enno Kätelhön
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
7
|
Ngamchuea K, Clark ROD, Sokolov SV, Young NP, Batchelor-McAuley C, Compton RG. Single Oxidative Collision Events of Silver Nanoparticles: Understanding the Rate-Determining Chemistry. Chemistry 2017; 23:16085-16096. [PMID: 28922508 DOI: 10.1002/chem.201703591] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 01/13/2023]
Abstract
The oxidative dissolution of citrate-capped silver nanoparticles (AgNPs, ∼50 nm diameter) is investigated herein by two electrochemical techniques: nano-impacts and anodic stripping voltammetry. Nano-impacts or single nanoparticle-electrode collisions allow the detection of individual nanoparticles. The technique offers an advantage over surface-immobilized methods such as anodic stripping voltammetry as it eliminates the effects of particle agglomeration/aggregation. The electrochemical studies are performed in different electrolytes (KNO3 , KCl, KBr and KI) at varied concentrations (≤20 mm). In nano-impact measurements, the AgNP undergoes complete oxidation upon impact at a suitably potentiostated electrode. The frequency of the nanoparticle-electrode collisions observed as current-transient spikes depends on the electrolyte identity, its concentration and the potential applied at the working electrode. The frequencies of the spikes are significantly higher in the presence of halide ions and increase with increasing potentials. From the frequency, the rate of AgNP oxidation as compared with the timescale the AgNP is in electrical contact with the electrode can be inferred, and hence is indicative of the relative kinetics of the oxidation process. Primarily based on these results, we propose the initial formation of the silver (I) nucleus (Ag+ , AgCl, AgBr or AgI) as the rate-determining process of silver oxidation on the nanoparticle.
Collapse
Affiliation(s)
- Kamonwad Ngamchuea
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Richard O D Clark
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Stanislav V Sokolov
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Neil P Young
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Richard G Compton
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
8
|
Ngamchuea K, Batchelor-McAuley C, Sokolov SV, Compton RG. Dynamics of Silver Nanoparticles in Aqueous Solution in the Presence of Metal Ions. Anal Chem 2017; 89:10208-10215. [DOI: 10.1021/acs.analchem.7b01470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kamonwad Ngamchuea
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Christopher Batchelor-McAuley
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Stanislav V. Sokolov
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Richard G. Compton
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|