1
|
Naskar P, Talukder S. Energetics and spectroscopic studies of CNO (-) (H 2 O) n $$ {\mathbf{CNO}}^{\left(\hbox{-} \right)}{\left({\mathbf{H}}_{\mathbf{2}}\mathbf{O}\right)}_{\mathbf{n}} $$ clusters and the temperature dependencies of the isomers: An approach based on a combined recipe of parallel tempering and quantum chemical methods. J Comput Chem 2024. [PMID: 39151062 DOI: 10.1002/jcc.27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/18/2024]
Abstract
A system associated with several number of weak interactions supports numerous number of stable structures within a narrow range of energy. Often, a deterministic search method fails to locate the global minimum geometry as well as important local minimum isomers for such systems. Therefore, in this work, the stochastic search technique, namely parallel tempering, has been executed on the quantum chemical surface of theCNO (-) (H 2 O) n $$ {\mathrm{CNO}}^{\left(\hbox{-} \right)}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n $$ system forn = 1 $$ n=1 $$ -8 to generate global minimum as well as several number of local minimum isomers. IR spectrum can act as the fingerprint property for such system to be identified. Thus, IR spectroscopic features have also been included in this work. Vertical detachment energy has also been calculated to obtain clear information about number of water molecules in several spheres around the central anion. In addition, in a real experimental scenario, not only the global but also the local minimum isomers play an important role in determining the average value of a particular physically observable property. Therefore, the relative conformational populations have been determined for all the evaluated structures for the temperature range between 20K and 400K. Further to understand the phase change behavior, the configurational heat capacities have also been calculated for different sizes.
Collapse
Affiliation(s)
- Pulak Naskar
- Department of Chemistry, Mrinalini Datta Mahavidyapith, Kolkata, India
| | | |
Collapse
|
2
|
Yang WH, Yu FQ, Huang R, Lin YX, Wen YH. Effect of composition and architecture on the thermodynamic behavior of AuCu nanoparticles. NANOSCALE 2024; 16:13197-13209. [PMID: 38916453 DOI: 10.1039/d4nr01778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The chemical and physical properties of nanomaterials ultimately rely on their crystal structures, chemical compositions and distributions. In this paper, a series of AuCu bimetallic nanoparticles with well-defined architectures and variable compositions has been addressed to explore their thermal stability and thermally driven behavior by molecular dynamics simulations. By combination of energy and Lindemann criteria, the solid-liquid transition and its critical temperature were accurately identified. Meanwhile, atomic diffusion, bond order, and particle morphology were examined to shed light on thermodynamic evolution of the particles. Our results reveal that composition-dependent melting point of AuCu nanoparticles significantly departs from the Vegard's law prediction. Especially, chemically disordered (ordered) alloy nanoparticles exhibited markedly low (high) melting points in comparison with their unary counterparts, which should be attributed to enhancing (decreasing) atomic diffusivity in alloys. Furthermore, core-shell structures and heterostructures demonstrated a mode transition between the ordinary melting and the two-stage melting with varying Au content. AuCu alloyed nanoparticles presented the evolution tendency of chemical ordering from disorder to order before melting and then to disorder during melting. Additionally, as the temperature increases, the shape transformation was observed in AuCu nanoparticles with heterostructure or L10 structure owing to the difference in thermal expansion coefficients of elements and/or of crystalline orientations. Our findings advance the fundamental understanding on thermodynamic behavior and stability of metallic nanoparticles, offering theoretical insights for design and application of nanosized particles with tunable properties.
Collapse
Affiliation(s)
- Wei-Hua Yang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Fang-Qi Yu
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Rao Huang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Yu-Xing Lin
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Yu-Hua Wen
- Department of Physics, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Rossi K, Pártay LB, Csányi G, Baletto F. Thermodynamics of CuPt nanoalloys. Sci Rep 2018; 8:9150. [PMID: 29904180 PMCID: PMC6002547 DOI: 10.1038/s41598-018-27308-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
The control of structural and chemical transitions in bimetallic nanoalloys at finite temperatures is one of the challenges for their use in advanced applications. Comparing Nested Sampling and Molecular Dynamics simulations, we investigate the phase changes of CuPt nanoalloys with the aim to elucidate the role of kinetic effects during their solidification and melting processes. We find that the quasi-thermodynamic limit for the nucleation of (CuPt)309 is 965 ± 10 K, but its prediction is increasingly underestimated when the system is cooled faster than 109 K/s. The solidified nanoparticles, classified following a novel tool based on Steinhardt parameters and the relative orientation of characteristic atomic environments, are then heated back to their liquid phase. We demonstrate the kinetic origin of the hysteresis in the caloric curve as (i) it closes for rates slower than 108 K/s, with a phase change temperature of 970 K ± 25 K, in very good agreement with its quasi-thermodynamic limit; (ii) the process happens simultaneously in the inner and outer layers; (iii) an onion-shell chemical order - Cu-rich surface, Pt-rich sub-surface, and mixed core - is always preserved.
Collapse
Affiliation(s)
- K Rossi
- Physics Department, King's College London, London, WC2R 2LS, United Kingdom
| | - L B Pártay
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.,Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - G Csányi
- Engineering Department, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
| | - F Baletto
- Physics Department, King's College London, London, WC2R 2LS, United Kingdom.
| |
Collapse
|
4
|
Abstract
Protein folding is often viewed in terms of a funneled potential or free energy landscape. A variety of experiments now indicate the existence of multifunnel landscapes, associated with multifunctional biomolecules. Here, we present evidence that these systems have evolved to exhibit the minimal number of funnels required to fulfill their cellular functions, suggesting an extension to the principle of minimum frustration. We find that minimal disruptive mutations result in additional funnels, and the associated structural ensembles become more diverse. The same trends are observed in an atomic cluster. These observations suggest guidelines for rational design of engineered multifunctional biomolecules.
Collapse
Affiliation(s)
- Konstantin Röder
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , U.K
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , U.K
| |
Collapse
|
5
|
Abstract
A general formulation for constructing addressable atomic clusters is introduced, based on one or more reference structures. By modifying the well depths in a given interatomic potential in favour of nearest-neighbour interactions that are defined in the reference(s), the potential energy landscape can be biased to make a particular permutational isomer the global minimum. The magnitude of the bias changes the resulting potential energy landscape systematically, providing a framework to produce clusters that should self-organise efficiently into the target structure. These features are illustrated for small systems, where all the relevant local minima and transition states can be identified, and for the low-energy regions of the landscape for larger clusters. For a 55-particle cluster, it is possible to design a target structure from a transition state of the original potential and to retain this structure in a doubly addressable landscape. Disconnectivity graphs based on local minima that have no direct connections to a lower minimum provide a helpful way to visualise the larger databases. These minima correspond to the termini of monotonic sequences, which always proceed downhill in terms of potential energy, and we identify them as a class of biminimum. Multiple copies of the target cluster are treated by adding a repulsive term between particles with the same address to maintain distinguishable targets upon aggregation. By tuning the magnitude of this term, it is possible to create assemblies of the target cluster corresponding to a variety of structures, including rings and chains.
Collapse
Affiliation(s)
- David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
6
|
Schebarchov D, Baletto F, Wales DJ. Structure, thermodynamics, and rearrangement mechanisms in gold clusters-insights from the energy landscapes framework. NANOSCALE 2018; 10:2004-2016. [PMID: 29319705 PMCID: PMC5901115 DOI: 10.1039/c7nr07123j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/15/2017] [Indexed: 05/27/2023]
Abstract
We consider finite-size and temperature effects on the structure of model AuN clusters (30 ≤ N ≤ 147) bound by the Gupta potential. Equilibrium behaviour is examined in the harmonic superposition approximation, and the size-dependent melting temperature is also bracketed using molecular dynamics simulations. We identify structural transitions between distinctly different morphologies, characterised by various defect features. Reentrant behaviour and trends with respect to cluster size and temperature are discussed in detail. For N = 55, 85, and 147 we visualise the topography of the underlying potential energy landscape using disconnectivity graphs, colour-coded by the cluster morphology; and we use discrete path sampling to characterise the rearrangement mechanisms between competing structures separated by high energy barriers (up to 1 eV). The fastest transition pathways generally involve metastable states with multiple fivefold disclinations and/or a high degree of amorphisation, indicative of melting. For N = 55 we find that reoptimising low-lying minima using density functional theory (DFT) alters their energetic ordering and produces a new putative global minimum at the DFT level; however, the equilibrium structure predicted by the Gupta potential at room temperature is consistent with previous experiments.
Collapse
Affiliation(s)
- D Schebarchov
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| | - F Baletto
- Department of Physics, King's College London, London WC2R 2LS, UK.
| | - D J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
7
|
Eckhoff M, Schebarchov D, Wales DJ. Structure and Thermodynamics of Metal Clusters on Atomically Smooth Substrates. J Phys Chem Lett 2017; 8:5402-5407. [PMID: 29043810 DOI: 10.1021/acs.jpclett.7b02543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We analyze the structure of model NiN and CuN clusters (N = 55, 147) supported on a variety of atomically smooth van der Waals surfaces. The global minima are mapped in the space of two parameters: (i) the laterally averaged surface stickiness, γ, which controls the macroscopic wetting angle, and (ii) the surface microstructure, which produces more subtle but important templating via epitaxial stresses. We find that adjusting the substrate lattice (even at constant γ) can favor different crystal plane orientations in the cluster, stabilize hexagonal close-packed order, or induce various defects, such as stacking faults, twin boundaries, and five-fold disclinations. Thermodynamic analysis reveals substrate-dependent solid-solid transitions in cluster morphology, with tunable transition temperature and sometimes exhibiting re-entrant behavior. These results shed new light on the extent to which a supporting surface can be used to influence the equilibrium behavior of nanoparticles.
Collapse
Affiliation(s)
- M Eckhoff
- University Chemical Laboratories , Lensfield Road, Cambridge CB2 1EW, United Kindom
| | - D Schebarchov
- University Chemical Laboratories , Lensfield Road, Cambridge CB2 1EW, United Kindom
| | - D J Wales
- University Chemical Laboratories , Lensfield Road, Cambridge CB2 1EW, United Kindom
| |
Collapse
|
8
|
Palomares-Baez JP, Panizon E, Ferrando R. Nanoscale Effects on Phase Separation. NANO LETTERS 2017; 17:5394-5401. [PMID: 28800237 DOI: 10.1021/acs.nanolett.7b01994] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Classical nucleation theory predicts that a binary system which is immiscible in the bulk should become miscible at the nanoscale when lowering its size below a critical size. Here we tackle the problem of miscibility in nanoalloys with a combination of ab initio and atomistic calculations, developing a statistical-mechanics approach for the free energy cost of forming phase-separated aggregates. We apply it to the controversial case of AuCo nanoalloys. AuCo is immiscible in the bulk, but a rich variety of nanoparticle configurations, both phase-separated and intermixed, have been obtained experimentally. Our calculations strongly point to the permanence of an equilibrium miscibility gap down to the nanoscale and to the nonexistence of a critical size below which phase separation is impossible. We show that this is due to nanoscale effects of general character, caused by the existence of preferred nucleation sites in nanoparticles, which lower the free-energy cost for phase separation with respect to bulk systems.
Collapse
Affiliation(s)
| | - Emanuele Panizon
- Dipartimento di Fisica, Università di Genova , Via Dodecaneso 33, Genova, I16146, Italy
| | - Riccardo Ferrando
- Dipartimento di Chimica e Chimica Industriale, Università di Genova , Via Dodecaneso 31, Genova, I16146, Italy
- CNR/IMEM , Via Dodecaneso 33, Genova, I16146, Italy
| |
Collapse
|
9
|
Wales DJ. Decoding heat capacity features from the energy landscape. Phys Rev E 2017; 95:030105. [PMID: 28415307 DOI: 10.1103/physreve.95.030105] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 04/28/2023]
Abstract
A general scheme is derived to connect transitions in configuration space with features in the heat capacity. A formulation in terms of occupation probabilities for local minima that define the potential energy landscape provides a quantitative description of how contributions arise from competition between different states. The theory does not rely on a structural interpretation for the local minima, so it is equally applicable to molecular energy landscapes and the landscapes defined by abstract functions. Applications are presented for low-temperature solid-solid transitions in atomic clusters, which involve just a few local minima with different morphologies, and for cluster melting, which is driven by the landscape entropy associated with the more numerous high-energy minima. Analyzing these features in terms of the balance between states with increasing and decreasing occupation probabilities provides a direct interpretation of the underlying transitions. This approach enables us to identify a qualitatively different transition that is caused by a single local minimum associated with an exceptionally large catchment volume in configuration space for a machine learning landscape.
Collapse
Affiliation(s)
- David J Wales
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|