1
|
Turner AB, Giraldo-Osorno PM, Douest Y, Morales-Laverde LA, Bokinge CA, Asa'ad F, Courtois N, Palmquist A, Trobos M. Race for the surface between THP-1 macrophages and Staphylococcus aureus on various titanium implants with well-defined topography and wettability. Acta Biomater 2025; 191:113-139. [PMID: 39528060 DOI: 10.1016/j.actbio.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Gristina et al. (1987) suggested that the fate of a biomaterial is decided in a "race for the surface" between pathogens and the host. To gain deeper insight into the mechanisms behind this concept, we investigated the "race for the surface" across three co-culture scenarios with THP-1 macrophages and Staphylococcus aureus (1:1 ratio), varying the order of addition: (i) simultaneous, (ii) macrophages first, and (iii) S. aureus first, on six Ti6Al4V-ELI surfaces modified with specific topographies and wettability. The outcome of the race for the surface was not influenced by these biomaterials but by the chronological introduction of macrophages and S. aureus. When macrophages and S. aureus arrived simultaneously, macrophages won the race, leading to the lowest number of viable S. aureus through rapid phagocytosis and killing. When macrophages arrived and established first, macrophages still prevailed but under greater challenge resulting from the lower bacterial killing efficiency of adherent macrophages and numerous viable intracellular bacteria, supporting the concept of the so-called immunocompromised zone around implants (upregulation of TLR-2 receptor and pro-inflammatory IL-1β). When S. aureus arrived first establishing a biofilm, bacteria won the race, leading to macrophage dysfunction and cell death (upregulation of FcγR and TLR-2 receptors, NF-κB signaling, NOX2 mediated reactive oxygen species), contributing to a persistent biofilm phenotype (upregulation of clfA, icaA, sarA, downregulation of agrA, hld, lukAB) and intracellular survival of S. aureus (lipA upregulation). The clinical implications are bacterial colonization of the implant and persistence of intracellular bacteria in periprosthetic tissues, which can lead to infection chronicity. STATEMENT OF SIGNIFICANCE: Gristina et al. (1987) suggested that the fate of a biomaterial is decided in a "race for the surface" between bacterial pathogens and host cells. There is a lack of in vitro co-culture models and knowledge on macrophage-S. aureus interactions on biomaterial surfaces, and no studies have evaluated the expression of virulence factors in S. aureus biofilms. We have successfully developed co-culture models and molecular panels, and elucidated important cellular and molecular interactions between macrophages and S. aureus on a broad range of titanium biomaterials with well-defined surface topography and wettability. Our findings highlight the critical role of biofilm formation and the chronological order of bacteria or macrophage arrival in determining the fate of the race for the surface.
Collapse
Affiliation(s)
- Adam Benedict Turner
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden; Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Paula Milena Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden; Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Yohan Douest
- INSA-Lyon, Université de Lyon, UMR CNRS 5510 MATEIS, 20 Avenue Albert Einstein, Villeurbanne CEDEX 69621, France; Anthogyr SAS, 2237 Avenue André Lasquin, Sallanches 74700, France
| | - Liliana Andrea Morales-Laverde
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden; Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Carl Anton Bokinge
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Nicolas Courtois
- Anthogyr SAS, 2237 Avenue André Lasquin, Sallanches 74700, France
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden; Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden.
| |
Collapse
|
2
|
Sui J, Hou Y, Chen M, Zheng Z, Meng X, Liu L, Huo S, Liu S, Zhang H. Nanomaterials for Anti-Infection in Orthopedic Implants: A Review. COATINGS 2024; 14:254. [DOI: 10.3390/coatings14030254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Postoperative implant infection is a severe complication in orthopedic surgery, often leading to implant failure. Current treatment strategies mainly rely on systemic antibiotic therapies, despite contributing to increasing bacterial resistance. In recent years, nanomaterials have gained attention for their potential in anti-infection methods. They exhibit more substantial bactericidal effects and lower drug resistance than conventional antimicrobial agents. Nanomaterials also possess multiple bactericidal mechanisms, such as physico-mechanical interactions. Additionally, they can serve as carriers for localized antimicrobial delivery. This review explores recent applications of nanomaterials with different morphologies in post-orthopedic surgery infections and categorizes their bactericidal mechanisms.
Collapse
Affiliation(s)
- Junhao Sui
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yijin Hou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mengchen Chen
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Zhong Zheng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Xiangyu Meng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Lu Liu
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai 200003, China
| | - Shu Liu
- Department of Spine Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Eijkel BIM, Apachitei I, Fratila-Apachitei LE, Zadpoor AA. In vitro co-culture models for the assessment of orthopedic antibacterial biomaterials. Front Bioeng Biotechnol 2024; 12:1332771. [PMID: 38375457 PMCID: PMC10875071 DOI: 10.3389/fbioe.2024.1332771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
The antibacterial biofunctionality of bone implants is essential for the prevention and treatment of implant-associated infections (IAI). In vitro co-culture models are utilized to assess this and study bacteria-host cell interactions at the implant interface, aiding our understanding of biomaterial and the immune response against IAI without impeding the peri-implant bone tissue regeneration. This paper reviews existing co-culture models together with their characteristics, results, and clinical relevance. A total of 36 studies were found involving in vitro co-culture models between bacteria and osteogenic or immune cells at the interface with orthopedic antibacterial biomaterials. Most studies (∼67%) involved co-culture models of osteogenic cells and bacteria (osteo-bac), while 33% were co-culture models of immune cells and bacterial cells (im-bac). All models involve direct co-culture of two different cell types. The cell seeding sequence (simultaneous, bacteria-first, and cell-first) was used to mimic clinically relevant conditions and showed the greatest effect on the outcome for both types of co-culture models. The im-bac models are considered more relevant for early peri-implant infections, whereas the osteo-bac models suit late infections. The limitations of the current models and future directions to develop more relevant co-culture models to address specific research questions are also discussed.
Collapse
Affiliation(s)
- Benedictus I. M. Eijkel
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Delft, Netherlands
| | | | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Delft, Netherlands
| | | |
Collapse
|
4
|
Shen Y, Jin Z, Ling M, Sun Z, Feng M, Xu C, Liu S. Advances in Research on Titanium and Titanium Alloys with Antibacterial Functionality for Medical Use—A Review. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Materials based on titanium and its alloys are widely used in the medical and dental fields because of their excellent physical properties such as hardness, ductility and elastic modulus, etc. However, because commonly used titanium alloy internal plants do not have antibacterial properties,
when these implants are implanted into the human body, there is a certain risk of infection. Such infections are extremely painful for the patient and problematic for the attending physician. In the past, infections of implants were usually treated with systemic antibiotics in combination
with thorough debridement or implant replacement. However, these are passive treatments and typically cause huge physical and economic burdens on the patient. Therefore, attempts towards the development of implants with antibacterial functionality have been increasing, with the combination
of titanium alloys with antibiotics, antibacterialmetals, and antibacterial peptides being the main research direction. Therefore, this paper will discuss the latest research progress in the preparation of titanium alloys with antibacterial strategies such as combining antibiotics or antimicrobial
peptides, adding antimicrobial metals, and the antibacterial properties and biocompatibility of proposed systems are summarised and discussed herein. This review should serve as a reference for further research on antibacterial titanium alloy implants.
Collapse
Affiliation(s)
- Yong Shen
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| | - Zhankui Jin
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| | - Ming Ling
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| | - Zhengming Sun
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| | - Min Feng
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| | - Shizhang Liu
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| |
Collapse
|
5
|
Fabrication of ultrasound-mediated cerium oxide nanoparticles for the examinations of human osteomyelitis and antibacterial activity. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02083-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Huang M, Ye K, Hu T, Liu K, You M, Wang L, Qin H. Silver Nanoparticles Attenuate the Antimicrobial Activity of the Innate Immune System by Inhibiting Neutrophil-Mediated Phagocytosis and Reactive Oxygen Species Production. Int J Nanomedicine 2021; 16:1345-1360. [PMID: 33633450 PMCID: PMC7901559 DOI: 10.2147/ijn.s292482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Despite the extensive development of antibacterial biomaterials, there are few reports on the effects of materials on the antibacterial ability of the immune system, and in particular of neutrophils. In this study, we observe differences between the in vivo and in vitro anti-infective efficacies of silver nanoparticles (AgNPs). The present study was designed to further explore the mechanism for this inconsistency using ex vivo models and in vitro experiments. METHODS AgNPs were synthesized using the polyol process and characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. The antibacterial ability of AgNPs and neutrophils was tested by the spread-plate method. The infected air pouch model was prepared to detect the antimicrobial ability of AgNPs in vivo. Furthermore, blood-AgNPs-bacteria co-culture model and reactive oxygen species (ROS) measurement were used to evaluate the effect of AgNPs to neutrophil-mediated phagocytosis and ROS production. RESULTS The antibacterial experiments in vitro showed that AgNPs had superior antibacterial properties in cell compatible concentration. While, AgNPs had no significant antibacterial effect in vivo, and pathological section in AgNPs group indicated less neutrophil infiltration in inflammatory site than S. aureus group. Furthermore, AgNPs were found to reduce the phagocytosis of neutrophils and inhibit their ability to produce ROS and superoxide during ex vivo and in vitro experiments. CONCLUSION This study selects AgNPs as the representative of inorganic nano-biomaterials and reveals the phenomenon and the mechanism underlying the significant AgNPs-induced inhibition of the antibacterial ability of neutrophils, and may have a certain enlightening effect on the development of biomaterials in the future. In the fabrication of antibacterial biomaterials, however, attention should be paid to both cell and immune system safety to make the antibacterial properties of the biomaterials and innate immune system complement each other and jointly promote the host's ability to resist the invasion of pathogenic microorganisms.
Collapse
Affiliation(s)
- Moran Huang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Kai Ye
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Tu Hu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Kexin Liu
- Department of General Practice, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Mengzhen You
- Department of General Practice, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Lei Wang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Hui Qin
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Gowri M, Latha N, Suganya K, Murugan M, Rajan M. Calcium alginate nanoparticle crosslinked phosphorylated polyallylamine to the controlled release of clindamycin for osteomyelitis treatment. Drug Dev Ind Pharm 2021; 47:280-291. [PMID: 33493022 DOI: 10.1080/03639045.2021.1879835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Osteomyelitis is one of the infections of the bone, and the treatment needs to the infection problems. Here, a local therapeutic approach for efficient drug delivery systems was designed to enhance the antibiotic drug's therapeutic activity. Calcium-Alginate nanoparticle (Ca-Alg) crosslinked phosphorylated polyallylamine (PPAA) was prepared through the salting-out technique, and it achieved 82.55% encapsulation of Clindamycin drug. The physicochemical characterizations of FTIR, SEM/EDX, TEM, and XRD were investigated to confirm the materials nature and formation. Clindamycin loaded Ca-Alg/PPAA system showed sustained Clindamycin release from the carrier. Cell viability was assessed in bone-related cells by Trypan blue assay and MTT assay analysis method. Both assay results exhibited better cell viability of synthesized materials against MG63 cells. MIC value of Ca-Alg/PPAA/Clindamycin in the Methicillin-resistant Staphylococcus aureus (MRSA) pathogen was 275 µg/mL, and it was 120 µg/mL for Enterobacter cloacae pathogen. The materials promising material for Osteomyelitis affected bone regeneration without any destructive effect and speedy recovery of infected parts from these investigations.
Collapse
Affiliation(s)
- Murugesan Gowri
- Department of Chemistry, Kandaswami Kandar's College, Namakkal, Tamil Nadu, India
| | - Nachimuthu Latha
- Department of Chemistry, Kandaswami Kandar's College, Namakkal, Tamil Nadu, India
| | - Kannan Suganya
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Marudhamuthu Murugan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
8
|
Sun X, Yang P, Wang S, Feng L, Shi J. Facile synthesis of up‐conversion
Cit‐NaYF
4
:Yb,Tm @phenol‐formaldehyde resin@Ag composites for the sensitive detection of
S
2
−. J Appl Polym Sci 2021. [DOI: 10.1002/app.49710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiangfei Sun
- School of Chemical Engineering Anhui University of Science and Technology Huainan China
| | - Ping Yang
- School of Chemical Engineering Anhui University of Science and Technology Huainan China
| | - Shaohua Wang
- School of Chemical Engineering Anhui University of Science and Technology Huainan China
| | - Lina Feng
- School of Chemical Engineering Anhui University of Science and Technology Huainan China
| | - Jianjun Shi
- School of Chemical Engineering Anhui University of Science and Technology Huainan China
| |
Collapse
|
9
|
Algharib SA, Dawood A, Xie S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv 2020; 27:292-308. [PMID: 32036717 PMCID: PMC7034104 DOI: 10.1080/10717544.2020.1724209] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most important zoonotic bacterial pathogens, infecting human beings and a wide range of animals, in particular, dairy cattle. Globally. S. aureus causing bovine mastitis is one of the biggest problems and an economic burden facing the dairy industry with a strong negative impact on animal welfare, productivity, and food safety. Furthermore, its smart pathogenesis, including facultative intracellular parasitism, increasingly serious antimicrobial resistance, and biofilm formation, make it challenging to be treated by conventional therapy. Therefore, the development of nanoparticles, especially liposomes, polymeric nanoparticles, solid lipid nanoparticles, nanogels, and inorganic nanoparticles, are gaining traction and excellent tools for overcoming the therapeutic difficulty accompanied by S. aureus mastitis. Therefore, in this review, the current progress and challenges of nanoparticles in enhancing the S. aureus mastitis therapy are focused stepwise. Firstly, the S. aureus treatment difficulties by the antimicrobial drugs are analyzed. Secondly, the advantages of nanoparticles in the treatment of S. aureus mastitis, including improving the penetration and accumulation of their payload drugs intracellular, decreasing the antimicrobial resistance, and preventing the biofilm formation, are also summarized. Thirdly, the progression of different types from the nanoparticles for controlling the S. aureus mastitis are provided. Finally, the difficulties that need to be solved, and future prospects of nanoparticles for S. aureus mastitis treatment are highlighted. This review will provide the readers with enough information about the challenges of the nanosystem to help them to design and fabricate more efficient nanoformulations against S. aureus infections.
Collapse
Affiliation(s)
- Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Guo G, Zhang H, Shen H, Zhu C, He R, Tang J, Wang Y, Jiang X, Wang J, Bu W, Zhang X. Space-Selective Chemodynamic Therapy of CuFe 5O 8 Nanocubes for Implant-Related Infections. ACS NANO 2020; 14:13391-13405. [PMID: 32931252 DOI: 10.1021/acsnano.0c05255] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Implant-related infections (IRIs) are a serious complication after orthopedic surgery, especially when a biofilm develops and establishes physical and chemical barriers protecting bacteria from antibiotics and the hosts local immune system. Effectively eliminating biofilms is essential but difficult, as it requires not only breaking the physical barrier but also changing the chemical barrier that induces an immunosuppressive microenvironment. Herein, tailored to a biofilm microenvironment (BME), we proposed a space-selective chemodynamic therapy (CDT) strategy to combat IRIs using metastable CuFe5O8 nanocubes (NCs) as smart Fenton-like reaction catalysts whose activity can be regulated by pH and H2O2 concentration. In the biofilm, extracellular DNA (eDNA) was cleaved by high levels of hydroxyl radicals (•OH) catalyzed by CuFe5O8 NCs, thereby disrupting the rigid biofilm. Outside the biofilm with relatively higher pH and lower H2O2 concentration, lower levels of generated •OH effectively reversed the immunosuppressive microenvironment by inducing pro-inflammatory macrophage polarization. Biofilm fragments and exposed bacteria were then persistently eliminated through the collaboration of pro-inflammatory immunity and •OH. The spatially selective activation of CDT and synergistic immunomodulation exerted excellent effects on the treatment of IRIs in vitro and in vivo. The anti-infection strategy is expected to provide a method to conquer IRIs.
Collapse
Affiliation(s)
- Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Huilin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chongzun Zhu
- Department of Orthopaedics, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Renke He
- Department of Orthopaedics, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Ya Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Xingwu Jiang
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wenbo Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
11
|
Munir MU, Ahmed A, Usman M, Salman S. Recent Advances in Nanotechnology-Aided Materials in Combating Microbial Resistance and Functioning as Antibiotics Substitutes. Int J Nanomedicine 2020; 15:7329-7358. [PMID: 33116477 PMCID: PMC7539234 DOI: 10.2147/ijn.s265934] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
The ongoing escalation of drug-resistant bacteria creates the leading challenges for human health. Current predictions show that deaths due to bacterial illness will be more in comparison to cancer in 2050. Irrational use of antibiotics, prolonged regimen and using as a prophylactic treatment for various infections are leading cause of microbial resistance. It is an emerging approach to introduce evolving nanomaterials (NMs) as a base of antibacterial therapy to overcome the bacterial resistance pattern. NMs can implement several bactericidal ways and turn into a challenge for bacteria to survive and develop resistance against NMs. All the pathways depend on the surface chemistry, shape, core material and size of NMs. Because of these reasons, NMs based stuff shows a critical role in advancing the treatment efficiency by interacting with the cellular system of bacteria and functioned as an antibiotic substitute. We divided this review into two sections. The first part highlights the development of microbial resistance to antibiotics and their mechanisms. The second section details the NMs mechanisms to combat antibiotic resistance. In short, we try to summarize the advances in NMs role to deal with microbial resistance and giving solution as antibiotics substitute.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia.,Nanobiotech Group, Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Muhammad Usman
- Department of Physics, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| |
Collapse
|
12
|
Zhang W, Yang C, Lei Z, Guan G, He SA, Zhang Z, Zou R, Shen H, Hu J. New Strategy for Specific Eradication of Implant-Related Infections Based on Special and Selective Degradability of Rhenium Trioxide Nanocubes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25691-25701. [PMID: 31264401 DOI: 10.1021/acsami.9b07359] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The greatest bottleneck for photothermal antibacterial therapy could be the difficulty in heating the infection site directly and specifically to evade the unwanted damage for surrounding healthy tissues. In recent years, infectious microenvironments (IMEs) have been increasingly recognized as a crucial contributor to bacterial infections. Here, based on the unique IMEs and rhenium trioxide (ReO3) nanocubes (NCs), a new specific photothermal antibacterial strategy is reported. These NCs synthesized by a rapid and straightforward space-confined on-substrate approach have good biocompatibility and exhibit efficient photothermal antibacterial ability. Especially when they are utilized in antibiofilm, the expression levels of biofilm-related genes (icaA, fnbA, atlE, and sarA for Staphylococcus aureus) can be effectively inhibited to block bacterial adhesion and formation of biofilm. Importantly, the ReO3 NCs can transform into hydrogen rhenium bronze (HxReO3) in an aqueous environment, making them relatively stable within the low pH of IMEs for photothermal therapy, while rapidly degradable within the surrounding healthy tissues to decrease photothermal damage. Note that under phosphate-buffered saline (PBS) at pH 7.4 without assistant conditions, these ReO3 NCs have the highest degradation rate among all known degradable inorganic photothermal nanoagents. This special and IME-sensitive selective degradability of the ReO3 NCs not only facilitates safe, efficient, and specific elimination of implant-related infections, but also enables effective body clearance after therapy. Solely containing the element (Re) whose atomic number is higher than clinic-applied iodine in all reported degradable inorganic photothermal nanoagents under the PBS (pH 7.4) without any assistant condition, the ReO3 NCs with high X-ray attenuation ability could be further applied to X-ray computed tomography imaging-guided therapy against implant-related infections. The present work described here is the first to adopt degradable inorganic photothermal nanoagents to achieve specific antibacterial therapy and inspires other therapies on this concept.
Collapse
Affiliation(s)
- Wenlong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Chuang Yang
- Department of Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233 , China
| | - Ziyu Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Guoqiang Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Shu-Ang He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital , Shanghai Jiao Tong University , Shanghai 200080 , China
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Hao Shen
- Department of Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233 , China
| | - Junqing Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen 518118 , China
| |
Collapse
|
13
|
Hu C, Ashok D, Nisbet DR, Gautam V. Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials 2019; 219:119366. [PMID: 31374482 DOI: 10.1016/j.biomaterials.2019.119366] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Biomedical implants have been widely used in various orthopedic treatments, including total hip arthroplasty, joint arthrodesis, fracture fixation, non-union, dental repair, etc. The modern research and development of orthopedic implants have gradually shifted from traditional mechanical support to a bioactive graft in order to endow them with better osteoinduction and osteoconduction. Inspired by structural and mechanical properties of natural bone, this review provides a panorama of current biological surface modifications for facilitating the interaction between medical implants and bone tissue and gives a future outlook for fabricating the next-generation multifunctional and smart implants by systematically biomimicking the physiological processes involved in formation and functioning of bones.
Collapse
Affiliation(s)
- Chao Hu
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - Deepu Ashok
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - David R Nisbet
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - Vini Gautam
- John Curtin School of Medical Research, Australian National University, ACT, 2601, Australia.
| |
Collapse
|
14
|
Yang C, Li J, Zhu C, Zhang Q, Yu J, Wang J, Wang Q, Tang J, Zhou H, Shen H. Advanced antibacterial activity of biocompatible tantalum nanofilm via enhanced local innate immunity. Acta Biomater 2019; 89:403-418. [PMID: 30880236 DOI: 10.1016/j.actbio.2019.03.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Abstract
Tantalum (Ta) has been shown to enhance osseointegration in clinical practice, yet little is known about whether Ta nanofilms can be used as antimicrobial coatings in vivo. A highly biocompatible Ta nanofilm was developed using magnetron sputtering technology to further study the mechanism of its antibacterial effects in vivo and elucidate its potential for clinical translation. The Ta nanofilms exhibited effective antimicrobial activity against soft tissue infections but did not show an intrinsic antimicrobial effect in vitro. This inconsistency between the in vivo and in vitro antimicrobial effects was further investigated using ex vivo models. The Ta nanofilms could enhance the phagocytosis of bacteria by polymorphonuclear neutrophils (PMNs, neutrophils), reduce the lysis of neutrophils and enhance the proinflammatory cytokine release of macrophages. This accumulative enhancement of the local host defenses contributed to the favorable antibacterial effect in vivo. The alleviated osteolysis observed in the presence of the Ta nanofilms in the osteomyelitis model further proved the practicality of this antibacterial strategy in the orthopedic field. In summary, Ta nanofilms show excellent biocompatibility and in vivo antimicrobial activity mediated by the enhancement of local innate immunity and are promising for clinical application. STATEMENT OF SIGNIFICANCE: In this study, Ta nanofilms were deposited on titanium substrate by magnetron sputtering. Ta nanofilms exhibited excellent in vivo and in vitro biocompatibility. In vivo antimicrobial effects of Ta nanofilms were revealed by soft tissue infection and osteomyelitis models, while no direct antibacterial activity was observed in vitro. Comprehensive ex vivo models revealed that Ta nanofilms could enhance the phagocytosis of bacteria by neutrophils, reduce the lysis of neutrophils and promote the release of proinflammatory cytokines from macrophages. This immunomodulatory effect helps host to eliminate bacteria. In contrast to traditional antimicrobial nanocoatings which apply toxic materials to kill bacteria, this work proposes a safe, practical and effective Ta nanofilm immunomodulatory antimicrobial strategy with clinical translational prospect.
Collapse
|
15
|
Multifunctional sulfonated polyetheretherketone coating with beta-defensin-14 for yielding durable and broad-spectrum antibacterial activity and osseointegration. Acta Biomater 2019; 86:323-337. [PMID: 30641289 DOI: 10.1016/j.actbio.2019.01.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
To address periprosthetic joint infection (PJI), a formidable complication after joint arthroplasty, an implant with excellent osseointegration and effective antibacterial activity has being extensively pursued and developed. In this work, the mouse beta-defensin-14 (MBD-14) was immobilized on the polyetheretherketone (PEEK) surface with three-dimensional (3D) porous structure to improve its antibacterial activity and osseointegration. An in vitro antibacterial evaluation showed that the porous PEEK loaded with MBD-14 wages a durable and effective fight against both Staphylococcus aureus (gram-positive) and Pseudomonas aeruginosa (gram-negative). In addition to the superior antibacterial activity, we found that the enhanced proliferation and osteogenic differentiation of bone mesenchymal stem cells were verified through various in vitro analyses. To evaluate the in vivo bactericidal effect and osseointegration of the samples, the rat femoral models with infection and non-infection were established. The enhanced osseointegration of the MBD-14-loaded samples was found in both two in vivo models. And no bacteria survived on the surfaces of samples with a relatively high MBD-14 concentration. Above results indicate that the 3D porous PEEK coating loaded with MBD-14 simultaneously yields excellent osseointegration while exerting durable and broad-spectrum antibacterial activity. And it paves the way for PEEK to be applied clinically to address PJI. STATEMENT OF SIGNIFICANCE: (1). By using the physio-chemical technique including sulfonation and lyophilization etc., a three-dimensional porous network is developed on polyetheretherketone (PEEK) surface, in which mouse beta-defensin-14 (MBD-14, a broad-spectrum antimicrobial peptide) is then loaded. It endows PEEK with antibacterial activity and osseointegration. (2). Two in vivo animal models with infection and non-infection are used to prove the new bone formation around the samples. (3). Supplementary material also proves that MBD-14 promotes the osteogenic differentiation of BMSCs. However, its potential mechanism needs to be further studied in future. (4). The modified PEEK, including excellent osseointegration and a durable and broad-spectrum antibacterial activity, could be applied clinically to address PJI which is a hot potato for surgeons and patients undergoing total joint arthroplasty.
Collapse
|
16
|
Petnikota S, Srikanth VVSS, Toh JJ, Srinivasan M, Bobba CVR, Adams S, Reddy MV. Electrochemistry-related aspects of safety of graphene-based non-aqueous electrochemical supercapacitors: a case study with MgO-decorated few-layer graphene as an electrode material. NEW J CHEM 2019. [DOI: 10.1039/c9nj00991d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Composites such as MgO/few-layered graphene can be used as electrode materials in supercapacitors with aqueous electrolytes but not non-aqueous electrolytes.
Collapse
Affiliation(s)
- Shaikshavali Petnikota
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
- School of Engineering Sciences and Technology
| | | | - Jun Jie Toh
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Madhavi Srinivasan
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Chowdari V. R. Bobba
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Stefan Adams
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore 117576
- Singapore
| | - Mogalahalli V. Reddy
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore 117576
- Singapore
| |
Collapse
|
17
|
Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E321. [PMID: 29473883 PMCID: PMC5849018 DOI: 10.3390/ma11020321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.
Collapse
Affiliation(s)
- Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| | - Cian O'Leary
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
18
|
Hu T, Xu H, Wang C, Qin H, An Z. Magnesium enhances the chondrogenic differentiation of mesenchymal stem cells by inhibiting activated macrophage-induced inflammation. Sci Rep 2018; 8:3406. [PMID: 29467509 PMCID: PMC5821731 DOI: 10.1038/s41598-018-21783-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
Magnesium deficiency increases the generation of pro-inflammatory cytokines, which is consistently accompanied by the sensitization of cells such as neutrophils, macrophages and endothelial cells. We investigated the potential of magnesium to regulate macrophage polarization and macrophage-induced inflammation with or without lipopolysaccharide (LPS) and interferon-γ (IFN-γ) activation and further elucidated whether these effects impact the inhibitory functions of activated macrophage-induced inflammation on cartilage regeneration. The results showed that magnesium inhibited the activation of macrophages, as indicated by a significant reduction in the percentage of CCR7-positive cells, while the percentage of CD206-positive cells decreased to a lesser degree. After activation, both pro-inflammatory and anti-inflammatory cytokines were down-regulated at the mRNA level and certain cytokines (IL-1β, IL-6 and IL-10) were decreased in the cell supernatant with the addition of magnesium. Moreover, magnesium decreased the nuclear translocation and phosphorylation of nuclear factor-κB (NF-κB) to impede its activation. A modified micromass culture system was applied to assess the effects of activated macrophage-conditioned medium with or without magnesium treatment on the chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Magnesium enhanced the chondrogenic differentiation of hBMSCs by reversing the adverse effects of activated macrophage-induced inflammation.
Collapse
Affiliation(s)
- Tu Hu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haitao Xu
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chongyang Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui Qin
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhiquan An
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
19
|
Wang J, Zhou H, Guo G, Tan J, Wang Q, Tang J, Liu W, Shen H, Li J, Zhang X. Enhanced Anti-Infective Efficacy of ZnO Nanoreservoirs through a Combination of Intrinsic Anti-Biofilm Activity and Reinforced Innate Defense. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33609-33623. [PMID: 28884578 DOI: 10.1021/acsami.7b08864] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The increasing prevalence of implant-associated infections (IAIs) imposes a heavy burden on patients and medical providers. Bacterial biofilms are recalcitrant to antiseptic drugs and local immune defense and can attenuate host proinflammatory response to interfere with bacterial clearance. Zinc oxide nanoparticles (ZnO NPs) play a dual role in antibacterial and immunomodulatory activities but compromise the cytocompatibility because of their intracellular uptake. Here, ZnO NPs were immobilized on titanium to form homogeneous nanofilms (from discontinuous to continuous) through magnetron sputtering, and the possible antimicrobial activity and immunomodulatory effect of nano-ZnO films were investigated. Nano-ZnO films were found to prohibit sessile bacteria more than planktonic bacteria in vitro, and the antibacterial effect occurred in a dose-dependent manner. Using a novel mouse soft tissue IAI model, the in vivo results revealed that nano-ZnO films possessed outstanding antimicrobial efficacy, which could not be ascribed solely to the intrinsic anti-infective activity of nano-ZnO films observed in vitro. Macrophages and polymorphonuclear leukocytes (PMNs), two important factors in innate immune response, were cocultured with nano-ZnO and bacteria/lipopolysaccharide in vitro, and the nano-ZnO films could enhance the antimicrobial efficacy of macrophages and PMNs through promoting phagocytosis and secretion of inflammatory cytokines. This study provides insights into the anti-infective activity and mechanism of ZnO and consolidates the theoretical basis for future clinical applications of ZnO.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Huaijuan Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jiaqi Tan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Wei Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong 999077, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| |
Collapse
|