1
|
Luo T, Li J, He Y, Liu H, Deng Z, Long X, Wan Q, Ding J, Gong Z, Yang Y, Zhong S. Designing a CRISPR/Cas12a- and Au-Nanobeacon-Based Diagnostic Biosensor Enabling Direct, Rapid, and Sensitive miRNA Detection. Anal Chem 2022; 94:6566-6573. [PMID: 35451838 DOI: 10.1021/acs.analchem.2c00401] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Direct, rapid, sensitive, and selective detection of nucleic acids in complex biological fluids is crucial for medical early diagnosis. We herein combine the trans-cleavage ability of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a with Au-nanobeacon to establish a CRISPR-based biosensor, providing rapid miRNA detection with high speed and attomolar sensitivity. In this strategy, we first report that the trans-cleavage activity of CRISPR/cas12a, which was previously reported to be triggered only by target ssDNA or dsDNA, can be activated by the target miRNA directly. Therefore, this method is direct, i.e., does not need the conversion of miRNA into its complementary DNA (cDNA). Meanwhile, as compared to the traditional ssDNA reporters and molecular beacon (MB) reporters, the Au-nanobeacon reporters exhibit improved reaction kinetics and sensitivity. In this assay, the miRNA-21 could be detected with very high sensitivity in only 5 min. Finally, the proposed strategy enables rapid, sensitive, and selective miRNA determination in complex biological samples, providing a potential tool for medical early diagnosis.
Collapse
Affiliation(s)
- Tong Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xi Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qingqing Wan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jiacheng Ding
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
2
|
Song X, Yang C, Yuan R, Xiang Y. Electrochemical label-free biomolecular logic gates regulated by distinct inputs. Biosens Bioelectron 2022; 202:114000. [DOI: 10.1016/j.bios.2022.114000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
|
3
|
He S, Cui R, Zhang Y, Yang Y, Xu Z, Wang S, Dang P, Dang K, Ye Q, Liu Y. Design and Realization of Triple dsDNA Nanocomputing Circuits in Microfluidic Chips. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10721-10728. [PMID: 35188362 DOI: 10.1021/acsami.1c24220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA logic gates, nanocomputing circuits, have already implemented basic computations and shown great signal potential for nano logic material application. However, the reaction temperature and computing speed still limit its development. Performing complicated computations requires a more stable component and a better computing platform. We proposed a more stable design of logic gates based on a triple, double-stranded, DNA (T-dsDNA) structure. We demonstrated a half adder and a full adder using these DNA nanocircuits and performed the computations in a microfluidic chip device at room temperature. When the solutions were mixed in the device, we obtained the expected results in real time, which suggested that the T-dsDNA combined microfluidic chip provides a concise strategy for large DNA nanocircuits.
Collapse
Affiliation(s)
- Songlin He
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Ruiming Cui
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, People's Republic of China
| | - Yao Zhang
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Yongkang Yang
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Ziheng Xu
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Shuoyu Wang
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Pingxiu Dang
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Kexin Dang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, People's Republic of China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, People's Republic of China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Yin Liu
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
4
|
Larkey NE, Phillips JL, Jang HS, Kolluri SK, Burrows SM. Small RNA Biosensor Design Strategy To Mitigate Off-Analyte Response. ACS Sens 2020; 5:377-384. [PMID: 31942801 DOI: 10.1021/acssensors.9b01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Several bottlenecks in the design of current sensor technologies for small noncoding RNA must be addressed. The small size of the sensors and the large number of other nucleotides that may have sequence similarity makes selectivity a real concern. Many of the current sensors have one strand with an exposed region called a toehold. The toehold serves as a place for the analyte nucleic acid strand to bind and initiate competitive displacement of sensors' secondary strands. Since the toehold region is not protected, any endogenous oligonucleotide sequences that are similar or only different by a few nucleic acids will interact with the toehold and cause false signals. To address sensor selectivity, we investigated how the toehold location in the sensor impacts the sensitivity and selectivity for the analyte of interest. We will discuss the differences in sensitivity and selectivity for a miR-146a-5p biosensor in the presence of different naturally occurring mismatch sequences. We found that altering the toehold location lowered the rate of the false signal from off-analyte microRNA by upward of 20 percentage points. Detection limits as low as 56 pM were observed when the sensor concentration was 5 nM. The findings herein are broadly applicable to other small and large RNAs as well as other types of sensing platforms.
Collapse
Affiliation(s)
- Nicholas E. Larkey
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Jessica L. Phillips
- Department of Environmental and Molecular Toxicology, Cancer Research Laboratory, Oregon State University, Corvallis, Oregon 97331, United States
| | - Hyo Sang Jang
- Department of Environmental and Molecular Toxicology, Cancer Research Laboratory, Oregon State University, Corvallis, Oregon 97331, United States
| | - Siva K. Kolluri
- Department of Environmental and Molecular Toxicology, Cancer Research Laboratory, Oregon State University, Corvallis, Oregon 97331, United States
| | - Sean M. Burrows
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
5
|
Chen C, Xu J, Shi X. Adjusting Linking Strands to Form Size-Controllable DNA Origami Rings. IEEE Trans Nanobioscience 2020; 19:167-172. [PMID: 31905142 DOI: 10.1109/tnb.2020.2964061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA origami is a powerful tool in nanotechnology that can be used to construct arbitrary structures for several nanoengineering applications. Generally, the more complex and sophisticated the construction, the greater is the number of origamis and connection strands that will be needed. Therefore, developing an effective and low-cost method for multiform DNA architecture is important in nanoengineering. Here, we adopted an oblique linking strategy to connect cross-shaped DNA origami with a controlled curing angle. The size of the DNA rings ranged from four blocks of approximately 200 nm to eleven blocks of c.a. 600 nm. We observed that the minimum size of the DNA ring structure was limited by the width of a single block. The largest rings were negatively affected by thermodynamic randomness, and thus, DNA rings consisting of more than eleven blocks were not observed. This strategy facilitates the generation of various DNA origami rings, whose size can be controlled by adjusting the length of the connection strands.
Collapse
|
6
|
Wang Z, Zhang J, Chen F, Cai K. Fluorescent miRNA analysis enhanced by mesopore effects of polydopamine nanoquenchers. Analyst 2018; 142:2796-2804. [PMID: 28682373 DOI: 10.1039/c7an00528h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The combination of fluorophore-labelled single-strand DNA probes and nanomaterial quenchers has shown great potential in miRNA detection. The development of advanced detection systems by understanding and controlling the fluorescence quenching/recovery via nanoquenchers' microstructures and local morphologies is an attractive area warranting further investigations. Inspired by nanopore sequencing, we present a novel miRNA sensing strategy using fluorophore-labeled DNA as probes and a type of large-pore-sized mesoporous polydopamine nanoparticles (MPDA-L, 70 nm in diameter) as fluorescence quenchers. It is revealed that the quenching efficiency of MPDA-L towards the fluorophore labelled on the probe, reached more than 99% at a relatively low particle concentration. Moreover, the mesopores effectively protected the probe DNA from cleavage by DNase I which was used for signal amplification. Sensitive detection of miRNA with a low detection limit of 32-40 pM, as well as a linear detection range of up to 5 nM, was realized by the mesopore effects via a greatly improved differential affinity of ssDNA and the probe-miRNA heteroduplex toward the surface of nanoquenchers. Interestingly, enhanced DLVO (Derjaguin-Landau-Verwey-Overbeek) repulsion generated inside the pore surface by the negative surface-curvature effect correlates with the improved duplex detachment and fluorescence recovery. The developed strategy can be successfully applied to quantify down-regulated let-7a and up-regulated miRNA-21 in different types of cancer cells by using total RNA samples from cell lysate. These findings are expected to inspire strategies and pave a way for utilizing porous nanomaterials for constructing miRNA detection systems.
Collapse
Affiliation(s)
- Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Feng Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| |
Collapse
|
7
|
Wang H, Zheng J, Sun Y, Li T. Cellular environment-responsive intelligent DNA logic circuits for controllable molecular sensing. Biosens Bioelectron 2018; 117:729-735. [DOI: 10.1016/j.bios.2018.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/12/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022]
|
8
|
Peveler WJ, Algar WR. More Than a Light Switch: Engineering Unconventional Fluorescent Configurations for Biological Sensing. ACS Chem Biol 2018; 13:1752-1766. [PMID: 29461796 DOI: 10.1021/acschembio.7b01022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence is a powerful and sensitive tool in biological detection, used widely for cellular imaging and in vitro molecular diagnostics. Over time, three prominent conventions have emerged in the design of fluorescent biosensors: a sensor is ideally specific for its target, only one fluorescence signal turns on or off in response to the target, and each target requires its own sensor and signal combination. These are conventions but not requirements, and sensors that break with one or more of these conventions can offer new capabilities and advantages. Here, we review "unconventional" fluorescent sensor configurations based on fluorescent dyes, proteins, and nanomaterials such as quantum dots and metal nanoclusters. These configurations include multifluorophore Förster resonance energy transfer (FRET) networks, temporal multiplexing, photonic logic, and cross-reactive arrays or "noses". The more complex but carefully engineered biorecognition and fluorescence signaling modalities in unconventional designs are richer in information, afford greater multiplexing capacity, and are potentially better suited to the analysis of complex biological samples, interactions, processes, and diseases. We conclude with a short perspective on the future of unconventional fluorescent sensors and encourage researchers to imagine sensing beyond the metaphorical light bulb and light switch combination.
Collapse
Affiliation(s)
- William J. Peveler
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | - W. Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
9
|
Lansing SS, Matlapudi S, Burrows SM. Molecular Approaches To Address the Challenges of RNA Analysis in Complex Matrices. Anal Chem 2018; 90:9156-9164. [DOI: 10.1021/acs.analchem.8b01621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shan S. Lansing
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Susmitha Matlapudi
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Sean M. Burrows
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
10
|
Li M, Wang Z, Liang J, Yao H, Shen L, Liu H, Fan L. A chemical/molecular 4-input/2-output keypad lock with easy resettability based on red-emission carbon dots-Prussian blue composite film electrodes. NANOSCALE 2018; 10:7484-7493. [PMID: 29637973 DOI: 10.1039/c8nr01258j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, a resettable 4-input/2-output keypad lock system based on red-emission carbon dots (rCDs) and Prussian blue (PB) modified electrodes was developed. Electrochromic PB layers were first electrochemically deposited on the indium tin oxide (ITO) electrode surface. An admixture of rCDs and chitosan (Chi) was then cast on the surface of PB layers, forming rCDs-Chi/PB film electrodes. UV-vis absorption of the films was sensitive to the applied potential since the blue PB constituent of the films would be transformed to nearly colorless Prussian white (PW) at the reduction potential of -0.2 V and then from PW back to PB at the oxidation potential of 0.4 V, and the transformation between PB and PW would also influence the fluorescence emission of the rCD constituent in the films. The addition of cysteine (Cys) in the testing solution could reduce the PB in the films into PW and generate an amperometric electrocatalytic current at 0.4 V. Meanwhile, the addition of Fe3+ in solution could greatly quench the fluorescence from the rCD component in the films. Thus, the responses of UV-vis absorbance, fluorescence emission and amperometric current of the rCDs-Chi/PB film electrode system exhibited potential-, Cys- and Fe3+-responsive switching properties. Based on the aforementioned work, a combinational logic gate circuit with 3 inputs and 3 outputs was established. In particular, on the same platform, a novel chemical/molecular 4-input/2-output keypad lock with easy resettability was elaborately designed with amperometric current and fluorescence peak intensity as two different types of outputs, so that a higher security level could be achieved.
Collapse
Affiliation(s)
- Menglu Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang Y, Lau C, Lu J. Target-initiated labeling for the dual-amplified detection of multiple microRNAs. Anal Chim Acta 2017; 992:76-84. [PMID: 29054152 DOI: 10.1016/j.aca.2017.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/21/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Herein we exploited a novel target-initiated labeling strategy for the multiplex detection of microRNAs (miRNAs) by coupling duplex-specific nuclease (DSN) with terminal deoxynucleotidyl transferase (TdT). In the presence of target miRNA, the immobilized and 3'-blocked capture probes hybridized with target and thus the formed DNA-RNA hybrid was recognized by DSN. DSN mediated the digestion of 3'-phosphated capture probes (CPs) in the hybrids and synchronously target was released and recycled for another round of hybridization and cleavage. The cleaved CP fragments with a free 3'-OH were then elongated and labeled with multiple biotin-dUTP nucleotides by TdT. Fluorescence reporter streptavidin-phycoerythin was finally added to react with the immobilized biotins and render fluorescence signals. This dual-amplification labeling strategy was successfully demonstrated to sensitively detect multiple miRNAs, taking advantage of DSN-mediated target recycling and TdT-catalyzed multiple signal modification with analysis by a commercial Luminex xMAP array platform. Our experimental results showed the simultaneous quantitative measurement of three sequence-specific miRNAs at concentrations from 1 pM to 2.5 nM. Attempts were also made to directly detect miRNAs in total RNA extracted from cancer cells. The dual-amplification labeling strategy reported here shows a great potential for the development of a method for the multiplexed, sensitive, selective, and simple analysis of multiple miRNAs in tissues or cells for biomedical research and clinical early diagnosis.
Collapse
Affiliation(s)
- Yinan Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Choiwan Lau
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Jianzhong Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
12
|
Massey M, Medintz IL, Ancona MG, Algar WR. Time-Gated FRET and DNA-Based Photonic Molecular Logic Gates: AND, OR, NAND, and NOR. ACS Sens 2017; 2:1205-1214. [PMID: 28787151 DOI: 10.1021/acssensors.7b00355] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular logic devices (MLDs) constructed from DNA are promising for applications in bioanalysis, computing, and other applications requiring Boolean logic. These MLDs accept oligonucleotide inputs and generate fluorescence output through changes in structure. Although fluorescent dyes are most common in MLD designs, nontraditional luminescent materials with unique optical properties can potentially enhance MLD capabilities. In this context, luminescent lanthanide complexes (LLCs) have been largely overlooked. Here, we demonstrate a set of high-contrast DNA photonic logic gates based on toehold-mediated strand displacement and time-gated FRET. The gates include NAND, NOR, OR, and AND designs that accept two unlabeled target oligonucleotide sequences as inputs. Bright "true" output states utilize time-gated, FRET-sensitized emission from an Alexa Fluor 546 (A546) dye acceptor paired with a luminescent terbium cryptate (Tb) donor. Dark "false" output states are generated through either displacement of the A546, or through competitive and sequential quenching of the Tb or A546 by a dark quencher. Time-gated FRET and the long luminescence lifetime and spectrally narrow emission lines of the Tb donor enable 4-10-fold contrast between Boolean outputs, ≤10% signal variation for a common output, multicolor implementation of two logic gates in parallel, and effective performance in buffer and serum. These metrics exceed those reported for many other logic gate designs with only fluorescent dyes and with other non-LLC materials. Preliminary three-input AND and NAND gates are also demonstrated. The powerful combination of an LLC FRET donor with DNA-based logic gates is anticipated to have many future applications in bioanalysis.
Collapse
Affiliation(s)
- Melissa Massey
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
13
|
Wu W, Shao X, Zhao J, Wu M. Controllable Photodynamic Therapy Implemented by Regulating Singlet Oxygen Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700113. [PMID: 28725533 PMCID: PMC5515253 DOI: 10.1002/advs.201700113] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/08/2017] [Indexed: 05/25/2023]
Abstract
With singlet oxygen (1O2) as the active agent, photodynamic therapy (PDT) is a promising technique for the treatment of various tumors and cancers. But it is hampered by the poor selectivity of most traditional photosensitizers (PS). In this review, we present a summary of controllable PDT implemented by regulating singlet oxygen efficiency. Herein, various controllable PDT strategies based on different initiating conditions (such as pH, light, H2O2 and so on) have been summarized and introduced. More importantly, the action mechanisms of controllable PDT strategies, such as photoinduced electron transfer (PET), fluorescence resonance energy transfer (FRET), intramolecular charge transfer (ICT) and some physical/chemical means (e.g. captivity and release), are described as a key point in the article. This review provide a general overview of designing novel PS or strategies for effective and controllable PDT.
Collapse
Affiliation(s)
- Wenting Wu
- State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumQingdao266580China
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
| | - Xiaodong Shao
- State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumQingdao266580China
| | - Jianzhang Zhao
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumQingdao266580China
| |
Collapse
|