1
|
Xiong Y, Wang L, Meng T, Kang X, Jiang H, Deng K, Xu H, Zeng Q. Two-Dimensional Self-Assembly of BODIPY Derivatives with Different Functional Groups at the Liquid-Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26221-26226. [PMID: 39604088 DOI: 10.1021/acs.langmuir.4c03726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The 4,4-difluoro-boradiazaindacene (BODIPY) unit possesses a rigid aromatic backbone, which facilitates the formation of self-assemblies and aggregates. However, most current studies on the self-assemblies of BODIPY derivatives have relied on spectroscopic methods to indirectly gather information about the self-assembled structures. In this study, we presented three BODIPY derivatives (B-3OC12, B-3OC12-2I, and B-DOB-2OC12) that shared the same core but were decorated with different functional groups. The self-assembled structures were revealed using scanning tunneling microscopy (STM) in combination with density functional theory (DFT). The results showed that all the molecules self-assembled into lamellar structures. When modified with three dodecyloxy chains or with the introduction of additional halogen atoms, the B-3OC12 and B-3OC12-2I molecules tended to distribute in a staggered form to build a tetramer or dimer. In contrast, the B-DOB-2OC12 molecule, which contains a dioxaborole group, self-assembled in a head-to-tail manner. These results demonstrated that BODIPY derivatives self-assembled into different structures, depending on their distinct patterns of intermolecular interactions influenced by functional groups.
Collapse
Affiliation(s)
- Yutong Xiong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Le Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Ting Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiyuan Kang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Hao Jiang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Meng T, Xiao X, Deng K, Zeng Q. Study on 2D Molecular Networks of Flexible Pentacarboxylic Acid Ligands Induced by Ether Bonds in Response to Selective Guest Inclusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10737-10744. [PMID: 38718162 DOI: 10.1021/acs.langmuir.4c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The flexibility of ligands allows for their bending, twisting, or rotation to adopt various conformations, leading to distinct symmetries during the self-assembled process. Flexible aromatic acid ligands modified by ether bonds are a promising type of self-assembled module when it comes to surfaces. Here, two pentacarboxylic acid ligands (H5L1 and H5L2) with minor skeleton differences have successfully self-assembled into disparate porous networks on the graphite surface and demonstrated excellent potential for the inclusion of guest molecules. The H5L1 molecule's network structure only accommodates coronene (COR) molecules. With fewer COR molecules, H5L1 molecules act as a host template to accommodate the COR molecules. When there are too many COR molecules, COR molecules will induce H5L1 molecules to transform into a new host-guest nanostructure. Additionally, H5L2 molecules showed the ability to capture C70 molecules and exhibited cavity selectivity. However, the assembled network of H5L2 was slightly deformed in attempts to trap the COR molecules. To understand these phenomena more deeply, various assembled mechanisms were analyzed in combination with building theoretical models and energy analysis. These results reveal the great potential of flexible aromatic acid ligands in two-dimensional self-assembly and host-guest systems for their application in related fields.
Collapse
Affiliation(s)
- Ting Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
| | - Xunwen Xiao
- College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Xie R, Hu Y, Lee SL. A Paradigm Shift from 2D to 3D: Surface Supramolecular Assemblies and Their Electronic Properties Explored by Scanning Tunneling Microscopy and Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300413. [PMID: 36922729 DOI: 10.1002/smll.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Indexed: 06/15/2023]
Abstract
Exploring supramolecular architectures at surfaces plays an increasingly important role in contemporary science, especially for molecular electronics. A paradigm of research interest in this context is shifting from 2D to 3D that is expanding from monolayer, bilayers, to multilayers. Taking advantage of its high-resolution insight into monolayers and a few layers, scanning tunneling microscopy/spectroscopy (STM/STS) turns out a powerful tool for analyzing such thin films on a solid surface. This review summarizes the representative efforts of STM/STS studies of layered supramolecular assemblies and their unique electronic properties, especially at the liquid-solid interface. The superiority of the 3D molecular networks at surfaces is elucidated and an outlook on the challenges that still lie ahead is provided. This review not only highlights the profound progress in 3D supramolecular assemblies but also provides researchers with unusual concepts to design surface supramolecular structures with increasing complexity and desired functionality.
Collapse
Affiliation(s)
- Rongbin Xie
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yi Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
4
|
Aza-BODIPY molecular assembly at the liquid-solid interface driven by Br⋯F BF interactions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Li X, Li J, Ma C, Chen C, Zhang S, Tu B, Duan W, Zeng Q. Selective adsorption behaviors of guest molecules COR in the hexamer host networks at liquid/solid interface. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Tan S, Shi H, Fu L, Ma J, Du X, Song J, Liu Y, Zeng Q, Xu H, Wan J. Superlubricity of Fullerene Derivatives Induced by Host-Guest Assembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18924-18933. [PMID: 32227981 DOI: 10.1021/acsami.0c02726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fullerenes have been recognized as good candidates for solid lubricants. In this study, the microscale superlubricity of fullerene derivatives was accomplished by the construction of regular host-guest assembly structures. Herein, the host-guest assembly structures of fullerene derivatives were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing the macrocycles as the templates and were explicitly revealed by scanning tunneling microscopy (STM). Meanwhile, the nanotribological properties of the host-guest assemblies were measured using atomic force microscopy (AFM), revealing ultralow friction coefficients of 0.003-0.008, which could be attributed to the restriction on removal of fullerene molecules after introducing the templates. The interaction energies were calculated by density functional theory (DFT) method, which indicates the correlation between friction coefficients and interaction strength in the host-guest assemblies. The effort on fullerene-related superlubricity could extend the solid superlubrication systems and provide a novel pathway to explore the friction mechanisms at the molecular level.
Collapse
Affiliation(s)
- Shanchao Tan
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hongyu Shi
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Lulu Fu
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin Du
- College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Song
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijun Xu
- College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Junhua Wan
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, China
| |
Collapse
|
7
|
Peng X, Zhang X, Qian Y, Lai T, Zhu X, Tu B, Peng X, Xie J, Zeng Q. Selective Adsorption of C 60 in the Supramolecular Nanopatterns of Donor-Acceptor Porphyrin Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14511-14516. [PMID: 31630522 DOI: 10.1021/acs.langmuir.9b02934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nanostructure of active layers consisting of donor and acceptor molecules is responsible for the separation and transfer processes of charge carriers, which may result in different photoelectric conversion efficiencies of organic photovoltaic cells (OPVCs). Therefore, intensive study on the relationships among nanostructures, intermolecular interactions, and molecular chemical skeletons is necessary for preparing controlled nanostructures of active layers by designing photovoltaic molecules. In this research, the self-assembled nanopatterns of three (DPP-ZnP-E)2-based molecules on highly oriented pyrolytic graphite surface were probed by scanning tunneling microscopy and analyzed by density functional theory calculations. The results indicated that different bridges, diethynylene, diethynylene-dithienyl, and diethynylene-phenylene, in (DPP-ZnP-E)2-based molecules not only made a difference to intermolecular interactions and cooperated with molecule-substrate interactions, consequently affecting the packed nanopattern, but also influenced the adsorption of fullerene acceptors in the nanopatterns of (DPP-ZnP-E)2-based molecules. C60 molecules were found to be selectively adsorbed atop the dithienyl groups of (DPP-ZnP-E)2-2T donor molecules probably by S···π interactions compared with (DPP-ZnP-E)2 or (DPP-ZnP-E)2-Ph molecules. This study on the assembled nanopatterns of the three (DPP-ZnP-E)2-based molecules would be conductive to (DPP-ZnP-E)2-based optoelectronic materials design in OPVCs.
Collapse
Affiliation(s)
- Xuan Peng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
- Center of Materials Science and Optoelectronic Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaojin Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , 381 Wushan Road , Guangzhou 510640 , China
| | - Yuxin Qian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Taiqi Lai
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , 381 Wushan Road , Guangzhou 510640 , China
| | - Xiaoyang Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Bin Tu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , 381 Wushan Road , Guangzhou 510640 , China
| | - Jingli Xie
- College of Biological, Chemical Science and Engineering , Jiaxing University , Jiaxing 314001 , China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
- Center of Materials Science and Optoelectronic Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
8
|
Xu H, Shi H, Liu Y, Song J, Lu X, Gros CP, Deng K, Zeng Q. Assembly structures and electronic properties of truxene-porphyrin compounds studied by STM/STS. Dalton Trans 2019; 48:8693-8701. [PMID: 31089664 DOI: 10.1039/c9dt01078e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The self-assembly of functional molecules into uniform nanostructures with innovational properties has attracted extensive research interest. In the present work, the assembly structures and electronic properties of a novel type of truxene derivative, e.g. truxene-porphyrin derivatives, were studied, for the first time, on a highly oriented pyrolytic graphite (HOPG) surface. Scanning tunneling microscopy (STM) images revealed that the truxene-porphyrin compounds could be parallelly arranged into long-ranged lamellar patterns. Density functional theory (DFT) calculations helped explain the assembly mechanisms further. Besides, order distribution of the smaller compound 1T1P in the 1,3,5-tris(10-carboxydecyloxy)-benzene (TCDB) host network was achieved, which is a reflection of the dimensional effect in the host-guest assembly. Furthermore, together with theoretical analyses, scanning tunneling spectroscopy (STS) measurements were conducted to investigate the electronic properties of truxene-porphyrin compounds. Results showed that the metalation of the porphyrin units could have a significant effect on the band gap and the position of the gap center. The study enhances our understanding of the assembly mechanism of truxene derivatives at the molecular level and paves the way towards fabricating truxene-based functional nanodevices.
Collapse
Affiliation(s)
- Haijun Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China. and State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Jian Song
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Xinchun Lu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Claude P Gros
- Université Bourgogne Franche-Comté, ICMUB (UMR UB-CNRS 6302), 9, Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| |
Collapse
|
9
|
Li W, Qiu S, Xu C, Hu J, Chen X. Two solvent-induced variable host-guest two-dimensional binary frameworks mediated by hydrogen bonding. Phys Chem Chem Phys 2019; 21:8940-8944. [PMID: 30985852 DOI: 10.1039/c9cp01395d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional binary hydrogen-bonded organic frameworks constructed from 1,3,5-benzenetricarboxylic acid (TMA) and 4,4'-biphenyldicarboxylic acid (BDA) on highly oriented pyrolytic graphite (HOPG) were investigated by scanning tunneling microscopy (STM) in heptanoic acid and octanoic acid solvents. High-resolution STM observations demonstrated that various assemblies of hydrogen-bonded networks are strongly dependent on the nature of the solvent. Well-ordered porous rectangular flowerlike networks were revealed at the heptanoic acid/HOPG interface, whereas two different coexisting densely packed guest-host BDA/TMA structures were observed at the octanoic acid/HOPG interface. It is suggested that the stabilization of the binary networks is possibly associated with the solvent chain length, and longer-chain solvents favored the formation of porous polymorphic networks.
Collapse
Affiliation(s)
- Wei Li
- Department of Science, Nanchang Institute of Technology, Nanchang 330099, P. R. China.
| | | | | | | | | |
Collapse
|
10
|
Qian Y, Tu B, Gao K, Liang T, Zhu X, Liu B, Duan W, Peng X, Fang Q, Geng Y, Zeng Q. Unravelling the Self-Assembly of Diketopyrrolopyrrole-Based Photovoltaic Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11952-11959. [PMID: 30220211 DOI: 10.1021/acs.langmuir.8b01798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The nanostructure of bulk heterojunction in an organic solar cell dominating the electron transport process plays an important role in improving the device efficiency. However, there is still a great need for further understanding the local nanostructures from the viewpoint of molecular design because of the complex alignment in the solid film. In this work, four kinds of photovoltaic materials containing a diketopyrrolopyrrole (DPP) unit combined with other different building blocks were selected and their self-assembled structures on a solid surface were studied by scanning tunneling microscopy technique in combination with theory calculations. The results reveal these DPP-based photovoltaic molecules self-assembled into different nanostructures, which strongly depend on the chemical structure, in particular the backbones and alkyl side chains. The planarities of backbones are affected both by molecule-substrate interaction and steric hindrance induced by the substituted thiophene or benzo[ b]thiophene units on DPP and porphyrin building blocks. The substituted branched alkyl side chains are out of the plane, which are influenced by the alignments of molecular backbones. In addition, the solution concentration also shows a large effect on the self-assembled nanostructures. This systematic research on the self-assembled structures of DPP-based semiconductors on a surface would provide guidance for designing materials and controlling the morphology of a donor/acceptor heterojunction system.
Collapse
Affiliation(s)
- Yuxin Qian
- Department of Chemistry, School of Science , Beijing Jiaotong University , Beijing 100044 , P. R. China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
| | - Bin Tu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
| | - Ke Gao
- State Key Laboratory of Luminescent Materials and Devices , Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology , Guangzhou 510640 , P. R. China
| | - Tianxiang Liang
- State Key Laboratory of Luminescent Materials and Devices , Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology , Guangzhou 510640 , P. R. China
| | - Xuhui Zhu
- State Key Laboratory of Luminescent Materials and Devices , Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology , Guangzhou 510640 , P. R. China
| | - Bo Liu
- Department of Chemistry, School of Science , Beijing Jiaotong University , Beijing 100044 , P. R. China
| | - Wubiao Duan
- Department of Chemistry, School of Science , Beijing Jiaotong University , Beijing 100044 , P. R. China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices , Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology , Guangzhou 510640 , P. R. China
| | - Qiaojun Fang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
| | - Yanfang Geng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
| |
Collapse
|
11
|
Li P, Lai Y, Wang Y, Qian Y, Duan W, Li C, Wang Z, Fang Q, Wang H, Tu B, Geng Y, Zeng Q. Adsorption of helical and saddle-shaped oligothiophenes on solid surface. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9233-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Zhang S, Geng Y, Fan Y, Duan W, Deng K, Zhao D, Zeng Q. Two-dimensional (2D) self-assembly of oligo(phenylene-ethynylene) molecules and their triangular platinum(ii) diimine complexes studied using STM. Phys Chem Chem Phys 2017; 19:31284-31289. [DOI: 10.1039/c7cp06154d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of a series of cyclic oligo(phenylene-ethynylene) (OPE) molecules and their triangular Pt(ii) diimine complexes were studied using scanning tunneling microscope (STM).
Collapse
Affiliation(s)
- Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| | - Yanfang Geng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| | - Yuanpeng Fan
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
| | - Wubiao Duan
- Department of Chemistry
- School of Science
- Beijing Jiaotong University
- Beijing
- P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| |
Collapse
|