1
|
Wang Y, Gianopoulos CG, Liu Z, Kirschbaum K, Alfonso D, Kauffman DR, Jin R. Au 36(SR) 22 Nanocluster and a Periodic Pattern from Six to Fourteen Free Electrons in Core Size Evolution. JACS AU 2024; 4:1928-1934. [PMID: 38818069 PMCID: PMC11134389 DOI: 10.1021/jacsau.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/01/2024]
Abstract
An Au36(S-tBu)22 nanocluster (NC) is synthesized using the bulky tert-butyl thiol as the ligand. Single-crystal X-ray crystallography reveals that it has an Au25 core which evolves from the Au22 core in the previously reported Au30(S-tBu)18, and the Au25 core is protected by longer staple-like surface motifs. The new Au36 NC extends the members of the face-centered cubic structural evolution by adding an Au3 triangle and an Au4 tetrahedron unit. Additionally, it is found that Au36 emits near-infrared photoluminescence at 863 nm with a quantum yield (QY) of 4.3%, which is five times larger than that of Au30(S-tBu)18-the closest neighbor in the structural evolution pattern. The higher QY of Au36 is attributed to a larger radiative relaxation (kr), resulting from the structural effect. Finally, we find that the longer staple motifs lead to enhanced stability of Au36(S-tBu)22 relative to Au30(S-tBu)18.
Collapse
Affiliation(s)
- Yitong Wang
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Zhongyu Liu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kristin Kirschbaum
- Department
of Chemistry and Biochemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Dominic Alfonso
- National
Energy Technology Laboratory, United States
Department of Energy, Pittsburgh, Pennsylvania 15236, United States
| | - Douglas R. Kauffman
- National
Energy Technology Laboratory, United States
Department of Energy, Pittsburgh, Pennsylvania 15236, United States
| | - Rongchao Jin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Li Q, Tan Y, Huang B, Yang S, Chai J, Wang X, Pei Y, Zhu M. Mechanistic Study of the Hydride Migration-Induced Reversible Isomerization in Au 22(SR) 15H Isomers. J Am Chem Soc 2023. [PMID: 37438248 DOI: 10.1021/jacs.3c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Unraveling the evolution mechanism of metal nanoclusters is of great importance in understanding the formation and evolution of metallic condensed matters. In this work, the specific evolution process between a pair of gold nanocluster (Au NC) isomers is completely revealed by introducing hydride ligands to simplify the research system. A hydride-containing Au NC, Au22(SR)15H, was synthesized by kinetic control, and the positions of the hydrides were then confirmed by combining X-ray diffraction, neutron diffraction, and DFT calculations. Importantly, a reversible structural isomerization was found to occur on this Au22(SR)15H. By combining the crystal structures and theoretical calculations, the focus was placed on the hydride-binding site, and a [Au-H] migration mechanism of this isomerization process is clearly shown. Furthermore, this [Au-H] migration mechanism is confirmed by the subsequent capture and structural determination of theoretically predicted intermediates. This work provides insight into the dynamic behavior of hydride ligands in nanoclusters and a strategy to study the evolution mechanism of nanoclusters by taking the hydride ligand as the breakthrough point.
Collapse
Affiliation(s)
- Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yesen Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Baoyu Huang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
3
|
Peng J, Pei Y. Exploration of the Atomic Pathway of Seed-Mediated Growth from Icosahedral [Au 25(SR) 18] - to Bi-Icosahedral Au 38(SR) 24 and Au 44(SR) 26 Clusters Based on the 2 e- Hopping Mechanism. Inorg Chem 2023; 62:6233-6241. [PMID: 37036896 DOI: 10.1021/acs.inorgchem.2c03997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Size growth is ubiquitous in the gold nanocluster synthesis. However, the atomic-level mechanism of seed-mediated growth of gold clusters remains mysterious. In this study, the seed-mediated growth pathway from the icosahedral [Au25(SR)18]- cluster to the bi-icosahedral Au38(SR)24 and Au44(SR)26 clusters is studied based on the two-electron (2e-) hopping mechanism. First, atomic structures of three key intermediate clusters, [Au29(SR)20]-, [Au33(SR)22]-, and Au41(SR)25, are predicted based on the 2e--unit decomposition strategy. The theoretically simulated UV-Vis spectra based on the predicted structure model of [Au29(SR)20]- and [Au33(SR)22]- matched well with the experimental curves reported previously. Based on the predicted intermediate cluster structures, the size growth pathway from the eight-electron (8e-) [Au25(SR)18]- cluster to 14-electron (14e-) Au38(SR)24 and 18-electron (18e-) Au44(SR)26 clusters is determined. In the step of formation of bi-icosahedral Au38(SR)24 from icosahedral [Au25(SR)18]-, two Au4 units are first formed. The third 2e- hopping step results in formation of an icosahedron unit. The present studies offered new insights into the formation and size conversion mechanism of ligand-protected gold nanoclusters containing icosahedral cores.
Collapse
Affiliation(s)
- Jiao Peng
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan Province 411105, China
| |
Collapse
|
4
|
Wang E, Ding J, Han W, Luan S. Structural Prediction of Anion Thiolate Protected Gold Clusters of [Au 28+7n(SR) 17+3n] − (n = 0-4). J Chem Phys 2022; 157:124303. [DOI: 10.1063/5.0105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Structural prediction of thiolate-protected gold nanocluster (AuNCs) with diverse charge states can enrich the understanding of this species. Till now, most expementally synthesized or theoretically predicted AuNCs structures own neutral total charge. In this work, a series of gold nanoclusters with negative total charge including [Au28(SR)17]−, [Au35(SR)20]−, [Au42(SR)23]−, [Au49(SR)26]−, and [Au56(SR)29]− are designed. Following crystallized [Au23(SR)16]- prototype structure, the inner core of the newly predicted clusters are obtained through packing crossed Au7. Next, proper protecting thiolate ligands are arranged to fullfil the duet rule to obtain Au3(2e) and Au4(2e). Extensive analysis indicates these cluster own high stabilities. Molecular orbital analysis shows that the orbitals for the populations of the valence electron locate at each Au3(2e) and Au4(2e), which demonstrates the reliability the GUM model. This work should be helpful for enriching the structural diversity of AuNCs.
Collapse
Affiliation(s)
- Endong Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, China
| | - Junxia Ding
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| | | | - Shixia Luan
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences, China
| |
Collapse
|
5
|
Li Q, Huang B, Yang S, Zhang H, Chai J, Pei Y, Zhu M. Unraveling the Nucleation Process from a Au(I)-SR Complex to Transition-Size Nanoclusters. J Am Chem Soc 2021; 143:15224-15232. [PMID: 34498861 DOI: 10.1021/jacs.1c06354] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atomically precise noble metal nanoclusters provide a critical benchmark for the fundamental research of the origin of condensed matter because they retain the original state of the metal bonds. Also, knowledge about the transition from organometallic complexes to a nanoclusters is important for understanding the structural evolution of the nanoclusters, particularly their nucleation mechanism. Herein, three transition-size gold nanoclusters are prepared via a controlled diphosphine-mediated top-down routine. Starting from small-size nanoclusters, three new nanoclusters including Au13(SAdm)8(L4)2(BPh4) (Au13), Au14(S-c-C6H11)10L4 (Au14), and Au16(S-c-C6H11)11LPh* (Au16) are obtained by controlled clipping on the surface and kernel of initial nanoclusters. Combining their atomically precise structures with DFT theoretical calculations, the overall atom-by-atom structural evolution process from Au12(SR)12 (0 e-) to Au18(SR)14 (4 e-) is mapped out. In addition, studies on their electronic structures show that the evolution from an organometallic complex to nanoclusters is accompanied by a dramatic decrease in the HOMO-LUMO gaps. Most importantly, the formation of the first Au-Au bond is captured in the "Au4S4 to Au5" nucleation process from Au12(SR)12 complex to the Au13 nanocluster. This work provides a deep insight into the origin of inner core in Au NCs and their structural transition relationship with metal complexes.
Collapse
Affiliation(s)
- Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.,School of Physics and Materials Science, Anhui University, Hefei, Anhui 230601, China
| | - Baoyu Huang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Hui Zhang
- School of Physics and Materials Science, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
6
|
Xiong L, Pei Y. Symmetric Growth of Dual-Packed Kernel: Exploration of the Evolution of Au 40(SR) 24 to Au 49(SR) 27 and Au 58(SR) 30 Clusters via the 2 e --Reduction Cluster Growth Mechanism. ACS OMEGA 2021; 6:18024-18032. [PMID: 34308037 PMCID: PMC8296561 DOI: 10.1021/acsomega.1c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The symmetric and periodic growth of metal core and ligand shell has been found in a number of ligand-protected metal clusters. So far, the principle of symmetric growth has been widely used to understand and predict the cluster structure evolution. In this work, based on the experimentally resolved crystal structure of Au40(o-MBT)24 and Au49(2,4-DMBT)27 clusters and a newly proposed two-electron (2e -) reduction cluster growth mechanism, the evolution pathway from the quasi-face-centered-cubic (fcc)-structured Au40(SR)24 cluster to the dual fcc- and nonfcc-packed Au49(SR)27 and Au58(SR)30 clusters was studied. The current research has clarified two important issues of cluster structure evolution. First, the formation of the dual-packed fcc and nonfcc kernel structure has been rationalized based on a 2e -reduction-based seed-mediated cluster growth pathway. Second, it is found that the symmetrical growth does not necessarily lead to the formation of stable cluster structures. It was found that the formation of dual-packed kernels in the Au49(SR)27 cluster is favorable because of the stability of the intermediate cluster structures and the relatively high thermodynamic stability of the cluster itself. However, although the structure of Au58(SR)30 cluster conforms to the principle of symmetric growth, the tension between the ligand shell and the gold atom of the metal nucleus increases significantly during the cluster size evolution, and the stability of the intermediate clusters is poor, so the formation of the Au58(SR)30 cluster is unfavorable. This study also shows that the 2e --reduction cluster growth mechanism can be used to explore the structural evolution and stability of thiolate-protected gold clusters.
Collapse
Affiliation(s)
- Lin Xiong
- Department of Chemistry,
Key Laboratory of Environmentally Friendly Chemistry and Applications
of Ministry of Education, Key Laboratory for Green Organic Synthesis
and Application of Hunan Province, Xiangtan
University, Xiangtan, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry,
Key Laboratory of Environmentally Friendly Chemistry and Applications
of Ministry of Education, Key Laboratory for Green Organic Synthesis
and Application of Hunan Province, Xiangtan
University, Xiangtan, Hunan Province 411105, China
| |
Collapse
|
7
|
Li Y, Zhou M, Song Y, Higaki T, Wang H, Jin R. Double-helical assembly of heterodimeric nanoclusters into supercrystals. Nature 2021; 594:380-384. [PMID: 34135522 DOI: 10.1038/s41586-021-03564-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/19/2021] [Indexed: 01/21/2023]
Abstract
DNA has long been used as a template for the construction of helical assemblies of inorganic nanoparticles1-5. For example, gold nanoparticles decorated with DNA (or with peptides) can create helical assemblies6-9. But without such biological ligands, helices are difficult to achieve and their mechanism of formation is challenging to understand10,11. Atomically precise nanoclusters that are protected by ligands such as thiolate12,13 have demonstrated hierarchical structural complexity in their assembly at the interparticle and intraparticle levels, similar to biomolecules and their assemblies14. Furthermore, carrier dynamics can be controlled by engineering the structure of the nanoclusters15. But these nanoclusters usually have isotropic structures16,17 and often assemble into commonly found supercrystals18. Here we report the synthesis of homodimeric and heterodimeric gold nanoclusters and their self-assembly into superstructures. While the homodimeric nanoclusters form layer-by-layer superstructures, the heterodimeric nanoclusters self-assemble into double- and quadruple-helical superstructures. These complex arrangements are the result of two different motif pairs, one pair per monomer, where each motif bonds with its paired motif on a neighbouring heterodimer. This motif pairing is reminiscent of the paired interactions of nucleobases in DNA helices. Meanwhile, the surrounding ligands on the clusters show doubly or triply paired steric interactions. The helical assembly is driven by van der Waals interactions through particle rotation and conformational matching. Furthermore, the heterodimeric clusters have a carrier lifetime that is roughly 65 times longer than that of the homodimeric clusters. Our findings suggest new approaches for increasing complexity in the structural design and engineering of precision in supercrystals.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Meng Zhou
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - Yongbo Song
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui, China
| | - Tatsuya Higaki
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - He Wang
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Liu P, Han W, Zheng M, Li W, Xu WW. Unraveling the Atomic Structures of 10-Electron (10e) Thiolate-Protected Gold Nanoclusters: Three Au 32(SR) 22 Isomers, One Au 28(SR) 18, and One Au 33(SR) 23. ACS OMEGA 2021; 6:10497-10503. [PMID: 34056202 PMCID: PMC8153794 DOI: 10.1021/acsomega.1c01345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The atomic structures of 10-electron (10e) thiolate-protected gold nanoclusters have not received extensive attention both experimentally and theoretically. In this paper, five new atomic structures of 10e thiolate-protected gold nanoclusters, including three Au32(SR)22 isomers, one Au28(SR)18, and one Au33(SR)23, are theoretically predicted. Based on grand unified model (GUM), four Au17 cores with different morphologies can be obtained via three different packing modes of five tetrahedral Au4 units. Then, five complete structures of three Au32(SR)22 isomers, one Au28(SR)18, and one Au33(SR)23 isomers can be formed by adding the thiolate ligands to three Au17 cores based on the interfacial interaction between thiolate ligands and gold core in known gold nanoclusters. Density functional theory calculations show that the relative energies of three newly predicted Au32(SR)22 isomers are quite close to two previously reported isomers. In addition, five new 10e gold nanoclusters have large highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps and all-positive harmonic vibration frequencies, indicating their high stabilities.
Collapse
Affiliation(s)
- Pengye Liu
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenhua Han
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Mengke Zheng
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenliang Li
- College
of Energy Engineering, Xinjiang Institute
of Engineering, Urumqi 830023, China
| | - Wen Wu Xu
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Li Q, Yang S, Chen T, Jin S, Chai J, Zhang H, Zhu M. Structure determination of a metastable Au 22(SAdm) 16 nanocluster and its spontaneous transformation into Au 21(SAdm) 15. NANOSCALE 2020; 12:23694-23699. [PMID: 33226059 DOI: 10.1039/d0nr07124b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is of great interest to investigate the evolution pattern of gold nanoclusters (Au NCs) due to its significance in understanding the growth mechanism and origin of Au NCs. Capture of metastable cluster intermediates is an effective way to meet this demand since they provide valuable information for understanding the conversion pathway of Au NCs. However, it is still challenging to obtain metastable Au NCs, especially thiol-protected Au NCs, and solve their structures. In this work, a metastable thiol-protected gold nanocluster, Au22(SAdm)16 (Au22), was synthesized and its structure was determined by single crystal X-ray diffraction. Au22 shows a close structure-evolution correlation with Au21(SAdm)15 (Au21). The symmetric Au10 kernel of Au21 is twisted by the insertion of an additional Au-SR unit on the motif during its structure evolution into Au22. The distortion in structures results in significantly distinguishing absorption and emission spectra between Au22 and Au21. Noteworthily, the structure correlation between Au22 and Au21 was also found experimentally that Au22 can spontaneously transform into Au21 due to the metastability of Au22 in solution. This size conversion process was monitored by time-dependent UV-vis spectroscopy and ESI-MS. Furthermore, the solvent effect on the size conversion process was also investigated. This transformation from Au22 to Au21 provides a unique platform for studies on the evolution pattern of gold nanoclusters at the single atom level.
Collapse
Affiliation(s)
- Qinzhen Li
- School of Physics and Materials Science, Anhui University, Hefei, Anhui 230601, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Xu WW, Lin D, Fu J, Zhao W, Duan X, Zeng XC. Chiral Au 22(SR) 17-: a new ligand-binding strategy for structural prediction of thiolate-protected gold nanocluster. Chem Commun (Camb) 2020; 56:2995-2998. [PMID: 32043505 DOI: 10.1039/d0cc00134a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new atomic structure of chiral thiolate-protected gold nanocluster Au22(SR)17- is predicted on the basis of the new ligand-binding strategy, namely, redistributing the Au-S "staple" motifs on the well-known Au10 core from previously laboratory-determined Au21(SR)15 crystal structure. Density functional theory calculations show that this structure is very likely the realistic structure for the synthesized Au22(SR)17-.
Collapse
Affiliation(s)
- Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China. and Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo, 315211, China
| | - Dongdong Lin
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China. and Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo, 315211, China
| | - Jie Fu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China. and Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo, 315211, China
| | - Wenhui Zhao
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China. and Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo, 315211, China
| | - Xiangmei Duan
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China. and Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo, 315211, China
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| |
Collapse
|
11
|
Xu WW, Duan X, Zeng XC. Modulation of the Double-Helical Cores: A New Strategy for Structural Predictions of Thiolate-Protected Gold Nanoclusters. J Phys Chem Lett 2020; 11:536-540. [PMID: 31903767 DOI: 10.1021/acs.jpclett.9b03515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A fundamental understanding of the structural growth of thiolate-protected gold nanoclusters not only benefits experimental synthesis but also will advance the methodology for structural predictions and for rational design of highly stable nanoclusters. Herein, we report numerous new structures (11 total) of thiolate-protected gold nanoclusters predicted from theoretical modulation of the double-helical cores of experimentally determined nanoclusters. Among these newly predicted structures, Au32(SR)22, Au40(SR)26, and Au48(SR)30 are obtained by adding a defective layer containing 4 gold atoms on a structural sequence of experimentally crystallized nanoclusters, namely, Au28(SR)20, Au36(SR)24, and Au44(SR)28. The generic growth pattern underlying this sequence of nanoclusters can be viewed as adding the highly stable tetrahedral Au4 unit on the double-helical cores. Likewise, the other eight newly predicted structures, including two groups of isomeric structures corresponding to the sequence of experimentally determined Au28(SR)20, Au36(SR)24, Au44(SR)28, and Au52(SR)32 nanoclusters, are successfully predicted. Density functional theory calculations show that these 11 newly predicted nanoclusters exhibit large highest occupied molecular orbital-lowest unoccupied molecular orbital gaps and all-positive harmonic vibrational frequencies, suggesting their high chemical stabilities. Additional analyses on the structures and properties suggest that these newly predicted nanoclusters are very likely to be synthesized in the laboratory. Confirmation by experiments would validate the new strategy for structural prediction of thiolate-protected gold nanoclusters by taking advantage of a large structure database of crystallized ligand-protected gold nanoclusters with a variety of gold cores.
Collapse
Affiliation(s)
- Wen Wu Xu
- Department of Physics, School of Physical Science and Technology , Ningbo University , Ningbo 315211 , China
- Laboratory of Clean Energy Storage and Conversion , Ningbo University , Ningbo 315211 , China
| | - Xiangmei Duan
- Department of Physics, School of Physical Science and Technology , Ningbo University , Ningbo 315211 , China
- Laboratory of Clean Energy Storage and Conversion , Ningbo University , Ningbo 315211 , China
| | - Xiao Cheng Zeng
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| |
Collapse
|
12
|
Lin D, Zheng M, Xu WW. Structural predictions of thiolate-protected gold nanoclusters via the redistribution of Au–S “staple” motifs on known cores. Phys Chem Chem Phys 2020; 22:16624-16629. [DOI: 10.1039/d0cp01661f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Four structures of gold nanoclusters were predicted via the redistribution of Au–S motifs on known cores.
Collapse
Affiliation(s)
- Dongdong Lin
- Department of Physics
- School of Physical Science and Technology
- Ningbo University
- Ningbo 315211
- China
| | - Mengke Zheng
- Department of Physics
- School of Physical Science and Technology
- Ningbo University
- Ningbo 315211
- China
| | - Wen Wu Xu
- Department of Physics
- School of Physical Science and Technology
- Ningbo University
- Ningbo 315211
- China
| |
Collapse
|
13
|
Liu Q, Zhang C, Xu C, Hu S, Cheng L. Prediction of the Au4S crystal via a superatom network model: from clusters to solids. Phys Chem Chem Phys 2020; 22:3921-3926. [DOI: 10.1039/c9cp06180k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prediction of the Au4S crystal on the basis of the structural character of the Au22(μ4-S)(SH)12 cluster.
Collapse
Affiliation(s)
- Qiman Liu
- Department of Chemistry
- Anhui University
- Hefei
- P. R. China
| | - Chengyu Zhang
- Department of Chemistry
- Anhui University
- Hefei
- P. R. China
| | - Chang Xu
- Department of Chemistry
- Anhui University
- Hefei
- P. R. China
| | - Shuanglin Hu
- Institute of Nuclear Physics and Chemistry
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Longjiu Cheng
- Department of Chemistry
- Anhui University
- Hefei
- P. R. China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
| |
Collapse
|
14
|
Lv Y, Ma X, Chai J, Yu H, Zhu M. Face-Centered-Cubic Ag Nanoclusters: Origins and Consequences of the High Structural Regularity Elucidated by Density Functional Theory Calculations. Chemistry 2019; 25:13977-13986. [PMID: 31429505 DOI: 10.1002/chem.201903183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 12/25/2022]
Abstract
Face-centered-cubic (FCC) silver nanoclusters (NCs) adopting either cubic or half-cubic growth modes have been recently reported, but the origin of these atomic assembly patterns and how they are achieved, which would inform our understanding of larger FCC silver nanomaterials, are both unknown. In this study, the cubic and half-cubic growth modes have been unified based on common structural characteristics, and differentiated depending on the starting blocks (cubic vs. half cubic). In both categories, the silver atoms adopt octahedral Ag6 , linear AgS2 (in projection drawing), or tetrahedral AgS3 P binding modes, and the sulfur atoms adopt T-shaped SAg3 and orthogonal SAg4 modes. An additional T-shaped AgS3 mode is oriented on the surface edge in cubic NCs to complete the cubic framework. Density functional theory calculations indicated that the high structural regularity originates from the strong diffusing capacity of the Ag(5d) and S(3p) orbitals, and the angular momentum distribution of the formed superatomic orbitals. The equatorial orientation of μ4 -S or μ4 -Ag determines whether growth stops or continues. In particular, a density-of-states analysis indicated that the octahedral silver atoms are chemically more reactive than the silver atoms in the AgS3 P motif, regardless of whether the parent NC functions as an electron donor or acceptor.
Collapse
Affiliation(s)
- Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials, Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Xiangyu Ma
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials, Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials, Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials, Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Anhui, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials, Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Anhui, 230601, P. R. China
| |
Collapse
|
15
|
Tian Z, Xu Y, Cheng L. New Perspectives on the Electronic and Geometric Structure of Au 70S 20(PPh 3) 12 Cluster: Superatomic-Network Core Protected by Novel Au 12(µ 3-S) 10 Staple Motifs. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1132. [PMID: 31390811 PMCID: PMC6722785 DOI: 10.3390/nano9081132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022]
Abstract
In order to increase the understanding of the recently synthesized Au70S20(PPh3)12 cluster, we used the divide and protect concept and superatom network model (SAN) to study the electronic and geometric of the cluster. According to the experimental coordinates of the cluster, the study of Au70S20(PPh3)12 cluster was carried out using density functional theory calculations. Based on the superatom complex (SAC) model, the number of the valence electrons of the cluster is 30. It is not the number of valence electrons satisfied for a magic cluster. According to the concept of divide and protect, Au70S20(PPh3)12 cluster can be viewed as Au-core protected by various staple motifs. On the basis of SAN model, the Au-core is composed of a union of 2e-superatoms, and 2e-superatoms can be Au3, Au4, Au5, or Au6. Au70S20(PPh3)12 cluster should contain fifteen 2e-superatoms on the basis of SAN model. On analyzing the chemical bonding features of Au70S20(PPh3)12, we showed that the electronic structure of it has a network of fifteen 2e-superatoms, abbreviated as 15 × 2e SAN. On the basis of the divide and protect concept, Au70S20(PPh3)12 cluster can be viewed as Au4616+[Au12(µ3-S)108-]2[PPh3]12. The Au4616+ core is composed of one Au2212+ innermost core and ten surrounding 2e-Au4 superatoms. The Au2212+ innermost core can either be viewed as a network of five 2e-Au6 superatoms, or be considered as a 10e-superatomic molecule. This new segmentation method can properly explain the structure and stability of Au70S20(PPh3)12 cluster. A novel extended staple motif [Au12(µ3-S)10]8- was discovered, which is a half-cage with ten µ3-S units and six teeth. The six teeth staple motif enriches the family of staple motifs in ligand-protected Au clusters. Au70S20(PPh3)12 cluster derives its stability from SAN model and aurophilic interactions. Inspired by the half-cage motif, we design three core-in-cage clusters with cage staple motifs, Cu6@Au12(μ3-S)8, Ag6@Au12(μ3-S)8 and Au6@Au12(μ3-S)8, which exhibit high thermostability and may be synthesized in future.
Collapse
Affiliation(s)
- Zhimei Tian
- Department of Chemistry, Anhui University, Hefei 230601, Anhui, China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, Anhui, China
| | - Yangyang Xu
- School of Social and Public Administration, East China University of Science and Technology, Shanghai 200237, China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, Hefei 230601, Anhui, China.
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
16
|
Wan T, Tang F, Yin Y, Zhang M, Choi MMF, Yang X. Size‐dependent electrophoretic migration and separation of water‐soluble gold nanoclusters by capillary electrophoresis. Electrophoresis 2019; 40:1345-1352. [PMID: 30680763 DOI: 10.1002/elps.201800347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/29/2018] [Accepted: 01/21/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Ting Wan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| | - Fenglin Tang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| | - Yanru Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| | - Maoxue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| | - Martin M. F. Choi
- Department of ChemistryHong Kong Baptist University Hong Kong SAR P. R. China
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| |
Collapse
|
17
|
Pei Y, Wang P, Ma Z, Xiong L. Growth-Rule-Guided Structural Exploration of Thiolate-Protected Gold Nanoclusters. Acc Chem Res 2019; 52:23-33. [PMID: 30548076 DOI: 10.1021/acs.accounts.8b00385] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the structure and structure-property relationship of atomic and ligated clusters is one of the central research tasks in the field of cluster research. In chemistry, empirical rules such as the polyhedral skeleton electron pair theory (PSEPT) approach had been outlined to account for skeleton structures of many main-group atomic and ligand-protected transition metal clusters. Nonetheless, because of the diversity of cluster structures and compositions, no uniform structural and electronic rule is available for various cluster compounds. Exploring new cluster structures and their evolution is a hot topic in the field of cluster research for both experiment and theory. In this Account, we introduce our recent progress in the theoretical exploration of structures and evolution patterns of a class of atomically precise thiolate-protected gold nanoclusters using density functional theory computations. Unlike the conventional ligand-protected transition metal compounds, the thiolate-protected gold clusters demonstrate novel metal core/ligand shell interfacial structures in which the Au m(SR) n clusters can be divided into an ordered Au(0) core and a group of oligomeric SR[Au(SR)] x ( x = 0, 1, 2, 3, ...) protection motifs. Guided by this "inherent structure rule", we have devised theoretical methods to rapidly explore cluster structures that do not necessarily require laborious global potential energy surface searches. The structural predictions of Au38(SR)24, Au24(SR)20, and Au44(SR)28 nanoclusters were completely or partially verified by the later X-ray crystallography studies. On the basis of the analysis of cluster structures determined by X-ray crystallography and theoretical prediction, a structural evolution diagram for the face-centered-cubic (fcc)-type Au m(SR) n clusters with m up to 92 has been preliminarily established. The structural evolution diagram indicates some basic structural and electronic evolution patterns of thiolate-protected gold nanoclusters. The fcc Au m(SR) n clusters show a genetic structural evolution pattern in which each step of cluster size increase results in the formation of another Au4 tetrahedron or Au3 triangle unit in the Au core, and every increase of a structural unit in the Au core leads to an increase of two electrons in the whole cluster. The unique one- or two-dimensional cluster size evolution, the isomerism of the Au-S framework, and the formation of a double-helical and cyclic tetrahedron network in the fcc Au m(SR) n clusters all can be addressed from this evolution pattern. The summarized cluster structural evolution diagrams enable us to further explore more stable cluster structures and understand their structure-electronic structure-property relationships.
Collapse
Affiliation(s)
- Yong Pei
- College of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Pu Wang
- College of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Zhongyun Ma
- College of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Lin Xiong
- College of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
18
|
Xu WW, Zeng XC, Gao Y. Application of Electronic Counting Rules for Ligand-Protected Gold Nanoclusters. Acc Chem Res 2018; 51:2739-2747. [PMID: 30289239 DOI: 10.1021/acs.accounts.8b00324] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding special stability of numerous ligand-protected gold nanoclusters has always been an active area of research. In the past few decades, several theoretical models, including the polyhedral skeletal electron pair theory (PSEPT), superatom complex (SAC), and superatom network (SAN), among others, have been developed for better understanding the stabilities and structures of selected ligand-protected gold nanoclusters. This Account overviews the recently proposed grand unified model (GUM) to offer some new insights into the structures and growth mechanism of nearly all crystallized and predicted ligand-protected gold nanoclusters. The main conceptual advancement of the GUM is identification of the duet and octet rules on the basis of the "big data" of 70+ reported ligand-protected gold nanoclusters. According to the two empirical rules, the cores of the gold nanoclusters can be regarded as being composed of two kinds of elementary blocks (namely, triangle Au3 and tetrahedron Au4), each having 2 e closed-shell valence electrons (referred as Au3(2 e) and Au4(2 e)), as well as the secondary block (icosahedron Au13) with 8 e closed-shell valence electrons (referred as Au13(8 e)). The two elementary blocks (Au3(2 e) and Au4(2 e)) and the secondary block (Au13(8 e)), from electron counting point of view, can be regarded as an analogy of the highly stable noble-gas atoms of He and Ne, respectively. In each elementary block, the Au atoms exhibit three different valence-electron states (i.e., 1 e, 0.5 e, and 0 e), depending on the type of ligands bonded with these Au atoms. Such three valence-electron states are coined as three "flavors" of gold (namely, bottom, middle, and top "flavor"), a term borrowed from the quark model in the particle physics. Upon application of the duet and octet rules with accounting the three valence states of gold atoms, the Au3(2 e), Au4(2 e), and Au13(8 e) blocks can exhibit 10 (denoted as Δ1-Δ10), 15 (denoted as T1-T15), and 91 (denoted as I1-I91) variants of valence states, respectively. When packing these blocks (with distinct electronic states) together, it forms the gold core of ligand-protected gold nanocluster. As such, the special stabilities of the ligand-protected gold nanoclusters are explained based on the local stability of each block. With GUM, rich and complex structures of ligand-protected gold nanoclusters have been analyzed through structure anatomy. Moreover, the growth of these clusters can be simply viewed as sequential addition of the blocks, rather than as addition of the gold atoms. Another useful application of the GUM is to analyze the structural isomerism. The three types of isomerism for the gold nanoclusters, i.e., core, staple, and complex isomerism, can be considered as an analogy of chain, point, and functional isomerism (known in organic chemistry), respectively. GUM can be applied to predict new clusters, thereby guiding experimental synthesis. Indeed, a number of ligand-protected gold nanoclusters with high stabilities were rationally designed based on the GUM.
Collapse
Affiliation(s)
- Wen Wu Xu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
- Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
19
|
Yang S, Chen S, Xiong L, Liu C, Yu H, Wang S, Rosi NL, Pei Y, Zhu M. Total Structure Determination of Au16(S-Adm)12 and Cd1Au14(StBu)12 and Implications for the Structure of Au15(SR)13. J Am Chem Soc 2018; 140:10988-10994. [DOI: 10.1021/jacs.8b04257] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Shuang Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Lin Xiong
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Chong Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Nathaniel L. Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
20
|
Nasaruddin RR, Chen T, Yan N, Xie J. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Sun X, Wang P, Xiong L, Pei Y. Theoretical prediction of a new stable structure of Au 28 (SR) 20 cluster. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
22
|
Higaki T, Liu C, Zhou M, Luo TY, Rosi NL, Jin R. Tailoring the Structure of 58-Electron Gold Nanoclusters: Au103S2(S-Nap)41 and Its Implications. J Am Chem Soc 2017; 139:9994-10001. [DOI: 10.1021/jacs.7b04678] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tatsuya Higaki
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Chong Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Meng Zhou
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tian-Yi Luo
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Rongchao Jin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|